
Intership proposal: convergence of the Wasserstein
gradient flow of the Sinkhorn divergence.

Contact: theo.lacombe@univ-eiffel.fr

In short: This internship project is about studying the Wasserstein gradient flow of the Sinkhorn
divergence to a target measure—a regularized version of the Wasserstein distance. The main question,
raised in [1], is to study the limit of this flow, which is expected to be the target measure itself in
reasonable settings.

This internship is expected to lead to a Ph.D. on related topics at the crossroad of entropic optimal
transport, geometry and numerical optimization. The Ph.D. will be supervised by François-Xavier
Vialard and T. Lacombe at the Laboratoire d’Informatique Gaspard Monge at Université Gustave
Eiffel and funded via the ANR project ThéATRE1.

1 Introduction: Optimal transport and Wasserstein Gradient flows.

The optimal transportation problem that consists of minimizing the cost of turning a source distribution
µ into a target distribution ν belonging to the space P2(Rd) of probability measures with finite second
moment. Formally,

OT(µ, ν) := inf
π∈Π(µ,ν)

1

2

∫∫
|x− y|2dπ(x, y), (1)

where Π(µ, ν) denotes measures on Rd×Rd with first and second marginals being µ and ν, respectively.
This quantity is referred to as the (squared) Wasserstein distance between µ and ν. Minimizers in (1)
are referred to as optimal transport plans between µ and ν. Should they be of the form π = (id, T )∗µ
for some (measurable) map T : Rd → Rd, T is said to be a Monge map between µ and ν induced by
π. Here, φ∗µ denotes the pushforward of a measure µ ∈ P2(Rd) by a (measurable) map φ : Rd → Rd,
i.e. φ∗µ(A) = µ(φ−1(A)) for all Borel A ⊂ Rd.

About two decades ago, it was observed that several important differential equations could be phrased
as minimization problems of functionals µ 7→ F(µ) with respect to the geometry induced by the optimal
transportation problem (1) [7, 6, 8]. To do so, one defines a sequence starting from µ0 by

µk+1 = argmin
µ

{
F(µ) +

1

2τ
OT(µ, µk)

}
(2)

for some step size τ > 0 and obtains under suitable assumptions an absolutely continuous curve t 7→ µt

in the limit τ → 0, called the Wasserstein gradient flow (WGF) of F .

In particular, when F(µ) = OT(µ, µtarget) for some µtarget and the sequence is initialized at µ0 = µsource,
one retrieves the so-called McCann interpolation between µsource and µtarget.

Entropy-regularized Optimal Transport. Cuturi popularized in [2] a variant of (1) by introducing
an entropic regularization term, yielding the Entropic Optimal Transport (EOT) formulation that can
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be expressed through two optimization problems dual of each other:

OTε(µ, ν) := min
π∈Π(µ,ν)

1

2

∫∫
|x− y|2dπ(x, y) + εKL(π|µ⊗ ν) (3)

= sup
f,g∈C(Rd)

∫
f(x)dµ(x) +

∫
g(y)dν(y)− ε

∫∫ (
e

f(x)+g(y)− 1
2 |x−y|2

ε − 1

)
dµ(x)dν(y) (4)

where ε > 0 is the regularization strength, and KL(α|β) :=
∫
log

(
dα
dβ

)
dα denotes the Kullback-Leibler

divergence between two probability measures. The seminal motivation was to turn (1) into a strictly
convex optimization problem that can be—whenever µ and ν have finite support—solved on GPU via
the Sinkhorn algorithm. Precisely, the Sinkhorn algorithm solves (4) by seeking for a fixed point of

Φ : (f, g) 7→
(
−ε log

∫
e

g(y)− 1
2 |•−y|2

ε dν(y),−ε log

∫
e

f(x)− 1
2 |x−•|2
ε dµ(x)

)
(5)

by simply building a sequence (ft, gt)t starting from f0, g0 by setting ft+1 = Φ(ft, gt) and gt+1 =
Φ(ft+1, gt). Under mild assumptions, this sequence is guaranteed to converge toward a solution (f ε, gε)
of (4) [9], called a pair of (Schrödinger) potentials for the measures µ and ν. A solution to the primal

problem (3) is then obtained through the relation πε = exp
(
fε(x)+gε(y)− 1

2
|x−y|2

ε

)
dµ(x)dν(y).

It then appeared that the interest of EOT goes way beyond computational efficiency. In particular, it
was proved in [3] that the Sinkhorn divergence [10, 4]

Skε(µ, ν) := OTε(µ, ν)−
1

2
OTε(µ, µ)−

1

2
OTε(ν, ν) (6)

defines a proper discrepancy between probability measures: Skε(µ, ν) ≥ 0 and equals 0 if and only
if µ = ν.2 Given that OTε (thus Skε) goes to OT as ε → 0, the Sinkhorn divergence Skε is a good
candidate to mimic the OT-geometry while being more computationally and statistically efficient in
numerical applications.

2 Wasserstein gradient flow of the Sinkhorn divergence

The goal of this internship is to study an open question raised in [1] is the following: for two measures
µsource, µtarget ∈ P2(Rd), in which case does the Wasserstein gradient flow of Skε(•, µtarget), initialized
at µ0 = µsource converges globally, i.e. µt → µtarget as t → ∞?

As a starting point, the work [1] establishes the existence and uniqueness of this gradient flow (at least
when µsource and µtarget are compactly supported). Global convergence is expected to occur generically
in specific (yet standard) situations only, and we propose to study two of them. We expect to treat the
first case during the internship; the second case is more likely to be a first project for the Ph.D. (but
of course, any preliminary results or intuition will be welcome).

The Gaussian Case. When µsource and µtarget are Gaussian (probability) distributions, many for-
mula are accessible in close form (see [5]). This makes the study significantly simpler and we hope that
an accurate description of the Wasserstein flow of Skε(•, µtarget) will be accessible. With (a priori)
increasing level of difficulty, we plan to consider the following questions:

1. Since Gaussian distributions are not compactly supported, the results of [1] does not apply
straightforwardly. Given the simple explicit formula we have in that case, how can we adapt the
main results of this work?

2. Can we prove global convergence, i.e. µε
t → µtarget, of the flow? This would provide a partial

answer to the open problem raised in [1, §4.2].
2These properties are not satisfied by OTε whenever ε > 0.
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Figure 1: The Wasserstein flow of Skε(•, µtarget) with n = 10 points, for different values of ε. When ε = 0.1, the
flow is close to following straight lines, i.e. the McCann interpolation. However, when ε increases, looking inside
the black box, one can observe that the matching between µsource and µtarget described by the flow changes,
suggesting a critical value εcrit ∈ (0.3, 0.5).

3. Assuming convergence toward µtarget as t → ∞, can we get a convergence rate?

This initial study will provide a playground showing what can be done in simple cases and will hopefully
help us to derive general principles to study this gradient flow. Additionally, having access to close
formula allows us to factor out all the possible numerical challenges related to computing (3) and thus
to benchmark numerical schemes with respect to the accessible ground truth.

The Particle Case. This second study acts as a counterpart of the Gaussian case where the source
and target measures are instead given by uniform measures supported on n Dirac masses, that is
µsource = 1

n

∑n
i=1 δxi and µtarget = 1

n

∑n
i=1 δyj , where xi, yj ∈ Rd. The motivation to study this

setting naturally stems from numerical applications where it is very common that one only observes
i.i.d. samples from (unknown) ground distributions.

Through preliminary experiments, we numerically observe that (i) global convergence hold for generic
µsource, µtarget and ε, (ii) when ε is small, the interpolation curve approximates the McCann interpola-
tion and in particular the matching induced between the xis and the yjs coincides with the permutation
σ, (iii) when ε increases, a “phase transition” occurs: while the flow still globally converges, the in-
duced matching changes, as illustrated in Figure 1. Expecting some regularity of the interpolation
with respect to ε, this suggests that there is a critical value εcrit around which the matching changes,
and in particular global convergence may fail at ε = εcrit. Therefore, the realistic conjecture that we
consider is the following:

Conjecture: Assuming that there exists a unique optimal transport plan between µsource and µtarget

for the unregularized problem (1), the Wasserstein flow of Skε(•, µtarget) initialized at µsource converges
toward µtarget for almost every ε.

As for the Gaussian case, we propose to investigate the following tracks:

1. An exhaustive study of the case n = 2. A preliminary investigation suggests that the sign of
⟨x1 − x2, y1 − y2⟩ is preserved through the flow (the edge case = 0 reflecting symmetric configu-
rations) and dictates the global convergence.

2. Establish the convergence of the flow toward µtarget for sufficiently small ε.

3. Study the convergence for general ε, possibly characterizing the critical value εcrit for which the
induced matching changes.
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