
Large Scale computation of Means and Clusters
for Persistence Diagrams using Optimal Transport

Théo Lacombe(1), Marco Cuturi(2), Steve Oudot(1)
(1)Inria Saclay, datashape. (2)CREST, ENSAE & Google Brain

Overview

Topological Data Analysis:
•Provides descriptors, called persistence diagrams
(PDs), of the topology of an object at all scales.
•Compares PDs with partial matching metrics.
Problem motivation:
•Hard to compute elementary statistics such as means.
•Current algorithm [1] to estimate PD barycenters is
non-convex and intractable on large data.

Our contributions:
•Reformulate PD metrics as exact OT problems.
•Adapt the OT entropic smoothing [2] for PD metrics,
in particular convolution on regular grids [3] allowing
parallelization and GPU computations.
•Propose a convex formulation and scalable algorithm
for PD barycenter estimation.
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Figure 1:TDA sketch: filtration of a space X with a function f and corre-
sponding PD accounting for the topology in the sublevel sets of f .
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Figure 2:TDA sketch: filtration on a point cloud and corresponding PD.

I. Persistence diagrams and metrics

Persistence diagrams (PDs) are finite point measures, i.e.
µ =

n∑
i=1
δxi, with xi ∈ {(t1, t2) ∈ R2, t2 > t1}. For p ≥ 1,

dp(µ, ν) :=

 min
ζ∈Γ(µ,ν)

∑
(x,y)∈ζ

‖x− y‖p +
∑
s/∈ζ
‖s− π∆(s)‖p


1
p

,

with Γ(µ, ν) : partialmatchings between µ and ν, and π∆(s)
the orthogonal projection of s onto the diagonal.
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Figure 3:(left) Two functions f, g : X → R. (right) Corresponding PDs
and an optimal partial matching ζ (edges).

(a) Input PDs (b) B-Munkres. (c) B-Munkres. (d) Our Alg.
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Figure 4:Illustration of our approach on a simple example. (a) 3 PDs for which we want to estimate a barycenter. (b,c) Outputs of B-Munkres algorithm
[1] for two different initializations. Variability is due to non-convexity. (d) The output of our convex formulation. It performs better (lower energy).

II. Smoothed optimal transport (OT)

a ∈ Rn
+

b ∈ Rm
+

bjai P ∈ Rn×m
+ | P1m = a, P T1n = b︸ ︷︷ ︸

Π(a,b)
Pij Cij∗

∑
i ai =

∑
j bjwith

C ∈ Rn×m
+

Smoothed OT problem (γ > 0):
Lγ
C(a, b) := min

P∈Π(a,b)
〈P,C〉 − γh(P )

where h(P ) := −∑ij Pij(logPij − 1).
Advantages:

• Solved by iterating (u, v) 7→
(
a

Kv
,
b

KTu

)
, with K := e−

C
γ .

•Converges to LC(a, b) := min{〈P,C〉 ;P ∈ Π(a, b)} when
γ → 0, with controllable error (upper and lower bounds).
•Numerically efficient to solve: GPU + Parallelism.
•Differentiable, with tractable gradient.

III. OT formulation of dp

Consider µ =
n1∑
i=1
δxi and ν =

n2∑
j=1

δyj. We have:

dp(µ, ν) = (Lcc(µ′, ν ′))
1
p ,

where

CC :=

0

‖xi − yj‖p

‖yj − π∆(yj)‖p

‖x
i
−
π

∆
(x

i)
‖p

n
1
+
1

n2 + 1

µ′ = ν′ =

n2 n1

1

1 1

1

...
..., , and

Rν Rµ

Idea: Approximate dp with LγC.

IV. Fast convolutions in the PD space

Discretize PDs on a d × d grid (+1 for the diagonal), ⇒ (d2 + 1) histograms. C,K are (d2 + 1) × (d2 + 1) shaped.
However, the operation u 7→ Ku can be reduced to (d× d) matrix multiplications using convolutions in the plane.

K

(
u
u∆

)
=

e−
1
γ
‖(i,j)−(i′,j′)‖pp

= e−
1
γ
|i−i′|p︸ ︷︷ ︸ · e− 1

γ
|j−j′|p︸ ︷︷ ︸ K

∆

K∆ 1

=u

u∆

d2

d2

kx u

,

+ u∆ K∆

+

ky

K∆ u u∆

d

d

kx ky

These matrix manipulations can be parallelized and performed efficiently as one big matrix multiplication on a GPU.
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V. Smoothed barycenters for PDs

For h1 . . . hN histograms, a barycenter (Fréchet mean) is a
minimizer of the energy:

Eγ : x 7→
N∑
i=1

Lγ
C(x + Rhi, hi + Rx),

which is differentiable with gradient

∇ = γ

 N∑
i=1

log(uγi ) + RT log(vγi )
 .

Advantages:
•Convex formulation: minimize with gradient descent.
Gives better estimations in practice.
•GPU + Parallelism: drastically outperform previous
algorithm (B-Munkres) developed in [1] on large scales.
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Figure 5:Running times of our algorithm (Sinkhorn, red) and algorithm
described in [1] (B-Munkres, blue). Log-log scale.

Application: k-means clustering on thousands of PDs:

Figure 6:k-means on a real life dataset of 5000 persistence diagrams. Two
identified clusters and their centroids.
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