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(a) Input PDs  (b) B-Munkres. (¢) B-Munkres. (d) Our Alg.
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& % % = S V. Smoothed barycenters for PDs
Topological Data Analysis: & =, % ¥ Y — e sy
. , . : H o x -Munkres (b) .08 For hy...hy histograms, a barycenter (Fréchet mean) is a
e Provides descriptors, called persistence diagrams &% x B-Munkres (c) e P
(PDs), of the topology of an object at all scales. e % ' | 2y
e Compares PDs with partial matching metrics. Our Alg. (d) 0.542
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Problem motivation:

Figure 4:lllustration of our approach on a simple example. (a) 3 PDs for which we want to estimate a barycenter. (b,c) Outputs of B-Munkres algorithm  which is differentiable with oradient

e Hard to compute elementary statistics such as means.

[1] for two different initializations. Variability is due to non-convexity. (d) The output of our convex formulation. It performs better (lower energy).

e Current algorigh@ 1] tobelstimaite P[?ibtarycenters is | | V=~ (Z log(u)) + RT log(v, ))
non-convex and intractable on large data. IT. Smoothed optimal transport (OT) II11. OT formulation of d,
Our contributions: Advantages:
e Reformulate PD metrics as exact OT problems. l | l a€R" Consider 1 = Z 0, and v = Z 0,.. We have: e Convex formulation: minimize with gradient descent.
] wi q; = b . . . . .
o Adapt the OT entropic smoothing |2] for PD metrics, | 1 beR? 2t =22 J=1 Gives better estimations in practice.
in particular convolution on regular grids [3| allowing " | | C e Ry (1, v) = (Le(p' V’))% ° GPU + Parallelism: drastically outperform previous
parallelization and GPU computations. a@-l b 10 b; PeR™ Pl, =a,P'1, =b algorithm (B-Munkres) developed in [1] on large scales.
| I Y A < T b) where
e Propose a convex formulation and scalable algorithm A
for PD barycenter estimation. Smoothed OT problem (fy > O): ! 2 — 103_: — Sinkhorn (cpu)
- & #  {--- Sinkhorn (gpu)
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where h(P) = —>;; P;j(log Pj — 1). 8| 5 wol LT
Advantages: . I R
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e Solved by iterating (u,v) — ,  with K :==¢e 7. Q
y g ( ) <KU KTu> - N9 + 1 > g 10~
e Converges to Lgo(a, b) := min{(P,C) ; P € Il(a,b)} when | | é |
_ _ _ _ _ _ 0 ith trollabl d1 b d Idea: Apprommate dp with L%« 0 o o,
Figure 1: TDA sketch: filtration of a space X with a function f and corre- v — 0, with controllable error (upper and lower bounds). Nb points in diagrams 7 (log-scale)
sponding PD accounting for the topology in the sublevel sets of f. e Numerically efficient to solve: GPU + Parallelism.

Figure 5:Running times of our algorithm (Sinkhorn, red) and algorithm

B . * Differentiable, with tractable gradient. described in [1] (B-Munkres, blue). Log-log scale.

e 'i'?f_’z’;’}.-—»BBBBB — . IV. Fast convolutions in the PD space Application: k-means clustering on thousands of PDs:
B : : : : 2 . 9 2 / ¢ F
i dond P Fﬂtmtm y f Gz, P) Persistence diagram Discretize PDs on a d x d grid (41 for the diagonal), = (d +.1) hlqstogra?ms. Q, K are (d +.1) X .(d + 1) shaped. f

However, the operation u — Kwu can be reduced to (d x d) matrix multiplications using convolutions in the plane.
Figure 2: TDA sketch: filtration on a point cloud and corresponding PD. A A F
I. Persistence diagrams and metrics
5 d k T ° U ° ky WA K A Figure 6:k-means on a real life dataset of 5000 persistence diagrams. Two
~L1|(i.9)~ () denti - -
Persistence diagrams (PDs) are finite point measures, i.e. o ( u) € Z| | |p " Sl el —] y identified clusters and their centroids.
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Figure 3:(left) Two functions f,g : X — R. (right) Corresponding PDs
and an optimal partial matching { (edges).
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