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Preamble. This exercise sheet gathers two types of exercises: some that have already been
addressed during the lectures and which are mostly “prove what is written in the slides”,
and some that can be seen as “complements” (they consider new problems that where not
mentioned during the lecture). The latter are indicated by a (*).

Some exercises also contains the tag “(explain)”. For such exercises, you need to explain
in your own words some concept studied in the course. Your speech should be accessible to,
say, a M1 student (i.e. someone with some solid background in maths and computer science,
but no advanced knowledge in machine learning / data sciences).

Some questions are marked as “Bonus”. It means that they are not necessary to catch the
main message carried by the exercise. They can be seen as complementary material on the
topic covered by the exercise.

1 Chapter 0 & 1: Generalities

Exercise 1 Let x1, . . . , xn ∈ Rd be observations. As we seek for a representative of our
observation, a natural goal is to minimize

x̂ 7→
n∑

i=1

∥x− xi∥p, (1)

for some p ≥ 1.

1. Find the optimal x̂ when p = 2 (justify).

2. What happen if p = 1? if p > 1 and p ̸= 2?

Exercise 2 (explain) What are the differences between supervised and unsupervised
learning? What are the pro and cons of both problems?
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2 Chapter 2: Regression

Exercise 3 (explain) What does the “overfitting” phenomenon refers to? How can it be
mitigated?

Exercise 4 (linear regression) Let (xi, yi)
n
i=1 be couples of observations and labels in

Rd × Rk. We consider the linear model with parameter M ∈ Rd×k defined as FM(x) = xM
for x ∈ Rd. We want to minimize the following objective function:

M 7→
n∑

i=1

∥FM(xi)− yi∥2, (2)

for some loss function ℓ : Rk × Rk → R+.

1. Recall why this model encompasses (i) affine regression x 7→ ax + b, (ii) polynomial
regression x 7→ a0 + a1x1 + · · ·+ adx

d.

2. Let ∥A∥22 = Tr(AAT ) denote the (squared) Froebenius norm of a matrix A. Show that
in that case, (2) boils down to minimize the function M 7→ ∥XM−Y ∥, where X ∈ Rn×d

is the matrix of observations, and Y ∈ Rn×k the matrix of corresponding labels.

3. Assuming that (XTX)−1 is invertible, determine the expression of the optimal M .

4. Propose an interpretation of this assumption.

5. Using the notion of pseudo-inverse (click on the link or search on Wikipedia), show
that one can still find an expression of optimal M even if (XTX)−1 is singular.

Exercise 5 (Ridge regression) With the same notation as Exercise 4, we consider the
model FM : x 7→ xM and the objective function

M 7→ ∥XM − Y ∥2 + λ∥M∥2, (3)

where λ ≥ 0 is an hyperparameter.

1. Recall what this model is useful for.

2. Show that, under some suitable assumption, one has access to a closed form solution
for the minimizer of (3)
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3 Chapter 3: An optimization detour

Exercise 6 Let L : Rd → R denote a real-valued function, and assume that it is of class C1.

Explain the claim “−∇L(θ) indicates the steepest descent direction of L at θ.”

Exercise 7 (Basic properties of convex functions) Let f : Rd → R be a convex
function, assumed to be of class C2 for the sake of simplicity.

1. Prove that for all x, y ∈ D(f) (the domain of f), one has

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ . (4)

2. Deduce that the gradient of f should be monotone, that is for all x, y ∈ D(f),

⟨∇f(x)−∇f(y), x− y⟩ ≥ 0. (5)

3. Deduce also that if ∇f(x) = 0, then x should be a global minimizer of f .

4. Prove that for all x ∈ D(f), the Hessian matrix of f at x should be positive semi-definite
(i.e. all its eigenvalues should be ≥ 0).

Exercise 8 (strong convexity) Let f : Rd → R be an α-strongly convex function, for
α > 0, assumed to be of class C2 for the sake of simplicity.

1. Show that for all x, y ∈ D(f), one has

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2. (6)

2. Show that the function x 7→ f(x)− α
2
∥x∥2 is convex.

3. Show that the eigenvalues of the Hessian matrix of f at any x ∈ D(f) should be larger
than α.

4. Show that f admits a unique minimizer x∗.

5. Prove that f satisfies the PL-inequality

0 ≤ f(x)− f(x∗) ≤ 1

2α
∥∇f(x)∥2. (7)

Exercise 9 (Convergence rate of the gradient descent) Let f : Rd → R be an
α-strongly convex and β-smooth function. Let x∗ denote the unique (global) minimizer of
f . Let x0 ∈ Rd and consider the sequence defined by xt+1 = xt − λ∇f(xt) for some (fixed)
λ > 0.
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1. Using the β-smoothness assumption, show that

f(xt+1)− f(xt) ≤ −λ
(
1− λβ

2

)
∥∇f(xt)∥2.

2. Using the PL-inequality (see (7)), deduce that if λ is small enough (to be specified),
one has

f(xt+1)− f(x∗) ≤
(
1− 2αλ

(
1− βλ

2

))
(f(xt)− f(x∗)).

3. Deduce that if λ belongs to some interval (to be specified), one obtains exponential
convergence rate of the current value (f(xt))t toward the minimal value f(x∗).

4 Chapter 4: Classification

Exercise 10 (Convexity of the Logistic Regression) The goal of this exercise is to
show the convexity of the cross-entropy for the logistic regression. More precisely, given
(xi, yi)

n
i=1, with xi ∈ Rd and yi = (0, . . . , 0, 1, 0, . . . , 0) ∈ RK (K being the number of classes),

we want to prove that

L : RK×d ∋ θ 7→ −
n∑

i=1

yi · log(smax(θxi)) (8)

is convex, where smax(a) =

(
ea[j]∑K

j′=1 e
a[j′]

)K

j=1

and the log is applied term-wise.

1. Show that if a function f : RK → R is convex and x ∈ Rd, then RK×d ∋ θ 7→ f(θx) is
convex.

2. Show that the problem boils down to showing that the log-sum-exp function φ : a 7→
log

(∑K
j=1 e

a[j]
)

is convex.

3. Using Hölder inequality, prove that φ is convex.

4. Propose another proof based using the Hessian matrix of φ.

5 Chapter 5: Unsupervised learning

Exercise 11 (Convergence of the Lloyd algorithm) TBA.
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Exercise 12 (Quantization problem) (*) Let P be a probability distribution on Rd

with finite second moment (i.e.
∫
|x|2dP (x) < ∞; denoted as P ∈ P2(Rd)), and n ∈ N. We

also assume that P is supported on at least n points.

A n-quantizer is a measurable map f : Rd → Rd whose image contains (at most) n
distinct points, i.e. |f(Rd)| ≤ n. Let Fn denote the set of all n-quantizers. The energy of
f ∈ Fn over P is defined as

EP (f) := EP [|X − f(X)|2] =
∫
Rd

|x− f(x)|2dP (x).

A n-quantizer f is said to be optimal for P if it minimizes EP . Let Vn(P ) := inff∈Fn EP (f)
denote the corresponding minimal value.

1. Show that for all f ∈ Fn, EP (f) <∞.

2. Show that
Vn(P ) = inf

α⊂Rd,|α|≤n
EP [min

a∈α
|X − a|2]. (9)

3. Let ψP : (Rd)n → R be defined as ψP (a1, . . . , an) := EP [mini=1,...,n |X−ai|2]. Minimizers
of ψ are called n-optimal set of centers. Show that minimizing ψ is equivalent to mini-
mizing f 7→ EP (f) and that there is a natural correspondence between the minimizers
of EP and ψP .

4. Is ψP convex in general?

5. Show that ψP is continuous.

6. Show that Vn(P ) < Vn−1(P ).

7. (hard) Prove that the sublevel set {(a1, . . . , an), ψP (a1, . . . , an) ≤ c} is compact for all
c ∈ (0, Vn−1(P )).

8. Deduce that the set of n-optimal quantizers of P is not empty.

9. Assume that we are observing a finite set of N observations x1, . . . , xN ∈ Rd, in which
case it makes sense to set P = 1

N

∑N
i=1 δxi

(where δx denote the Dirac mass located at
x ∈ Rd). In that case, the quantization can be interpreted as a (i) supervised learning
problem, (ii) unsupervised learning problem? (Pick one.)

10. Observe that the k-mean problem is a quantization problem.

11. (Bonus) Define the Wasserstein distance1 between two probability measures µ and ν
as

W2(µ, ν) := inf
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|2dπ(x, y)
) 1

2

, (10)

1You may consider proving that this is indeed a distance on P2(Rd). This is an interesting yet pretty hard
exercise from scratch; you may look at some references online.
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where Π(µ, ν) denote the set of probability measures on Rd × Rd that admit µ and ν
as first and second marginal, respectively. For a measurable map T : Rd → Rd, let also
T#µ denote the pushforward measure of µ by T , that is the measure defined for any
borel A ⊂ Rd as T#µ(A) = µ(T−1(A)). Prove that

Vn(P ) = inf
f∈Fn

W2(µ, f#µ)
2. (11)

Exercise 13 (Gaussian mixture models) (*) TBA

Exercise 14 (Spectral clustering) (*) TBA

Exercise 15 (Linear AE) (*) We consider a linear autoencoder, that is the encoder is
given by x 7→ Ax and the decoder by z 7→ Bz, where X = Rd, Z = Rk, and A ∈ Rk×d and
B ∈ Rd×k. Training this autoencoder on a dataset X ∈ Rd×n consists of minimizing

(A,B) 7→ ∥BAX −X∥2.

1. Assuming that (XXT ) is non-singular (invertible), show that at fixed B such that
BTB is non-singular as well, one has A = (BTB)−1BT . Note: this matrix is called the
Moore-Penrose pseudo-inverse of B.

2. Deduce that training a linear AE is substantially equivalent to perform a PCA.

3. What happen if we consider an affine AE, i.e. the encoder is x 7→ Ax + a and the
decoder is z 7→ Bz + b for some vectors a, b (that are also optimized at training time,
along with the matrices A and B)?

6 Chapter 6: Kernel methods

Exercise 16 (Examples of kernels) (*)

The linear kernel. Let X = Rd and define K(x, y) = ⟨x, y⟩ (the usual Euclidean inner-
product on Rd).

1. Show that K defines a PSD kernel on Rd.

2. What is the corresponding RKHS H? (specify the inner product in H)
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The quadratic kernel. Still with X = Rd, let K(x, y) = ⟨x, y⟩2.

1. Expressing ⟨x, y⟩2 as an inner-product, prove that K is a PSD kernel on Rd.

2. Determine the corresponding RKHS.

Exercise 17 (Basic properties of Kernels) Let K and K ′ be two (PSD) kernels on a
space X . Show that

1. K +K ′ is a kernel.

2. K ·K ′ is a kernel.

3. (*) Show that if K is a kernel, so is eK .

Exercise 18 (Kernel and Fourier transform) Let K(x, y) = h(x − y) for some h :
Rd → R (that satisfies h(u) = h(−u), making K is symmetric). Assume that the Fourier
transform of h—defined by ĥ(ω) :=

∫
Rd e

−i⟨ω,u⟩du—is non-negative.

• Show that K is a PSD kernel on Rd.

• Deduce that (x, y) 7→ exp
(
−∥x−y∥2

2σ2

)
defines a kernel on Rd (for any σ > 0).

Exercise 19 (Kernelization of k-means) (*) Let X be a set and consider a PSD kernel
K on X with corresponding RKHS H and feature map φ. The goal of this exercise is to show
that, given a set of observation x1, . . . , xn in X , we can consider solving the k-means problem
on H with observations φ(x1), . . . , φ(xn) only through the manipulation of the Gram matrix
G := (K(xi, xj))ij.

For this, we recall that the loss function of the k-means problem is given by

L(c1, . . . , ck) :=
n∑

i=1

min
j=1,...,k

∥φ(xi)− cj∥2H, (12)

where c1, . . . , ck ∈ H.

1. Show that

L(c1, . . . , ck) =
n∑

i=1

∥φ(xi)− csi∥2H,

where si = argminj ∥φ(xi)− cj∥2H.

2. Show that the map c 7→
∑n

i=1 ∥φ(xi)−c∥2H is minimized when c = 1
n

∑n
i=1 φ(xi). Beware

that H may be an infinite dimensional Hilbert space, so you cannot faithfully rely on
gradient computation as we usually did on Rd.
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3. Introducing Cj := {i, si = j} for j = 1, . . . , k, deduce that minimizing (12) boils down
to minimizing

(s1, . . . , sn) 7→
n∑

i=1

∥∥∥∥∥∥φ(xi)− 1

|Csi |
∑
j∈Csi

φ(xj)

∥∥∥∥∥∥
2

H

,

where s1, . . . , sn are now variables in {1, . . . , k}.

4. Deduce that performing k-means in H boils down to an optimization problem on
(s1, . . . , sn) that only requires the knowledge of K. Note: you can reach a simple
formula after careful simplification. Nonetheless, the optimization problem remains
highly non-trivial.

Exercise 20 (Heat kernel on graphs) Let V denote a finite set (v1, . . . , vn) and G =
(V,E) denote a non-oriented connected graph, i.e. E ⊂ V × V and (v, v′) ∈ E ⇒ (v′, v) ∈ E
and for any v, v′ there always exists a path (v0, . . . , vN) with v0 = v, vN = v′ and (vi, vi+1) ∈ E
for all i = 0, . . . , N − 1. We introduce the following notations:

• The adjacency matrix A ∈ Rn×n is defined by Aij = 1 if (vi, vj) ∈ E, 0 otherwise.

• The degree matrix D ∈ Rn×n is the diagonal matrix defined by Dii =
∑n

j=1Aij.

• The Laplacian matrix of G is the matrix L := D − A ∈ Rn×n.

• Given a square matrix M ∈ Rn×n, we let exp(M) :=
∑

k≥0
Mk

k!
denote the usual expo-

nential of a matrix.

1. Let f0 ∈ Rn be a n-dimensional vector (that can be understood as assigning values on
the nodes of G). Consider the discrete diffusion equation on Rn defined as

∂tf(t) = −Lf(t),

with f(0) = f0.

Show that f(t) = f0e
−tL is a solution of this equation.

2. Show that L is a symmetric, positive definite matrix.

3. Deduce that for any t > 0, Kt := e−tL defines a PSD kernel on G (formally, the kernel
is (vi, vj) 7→ (Kt)ij).

This kernel is called the heat kernel on G with temperature t.

4. (bonus) Compute the heat kernel (for any temperature t > 0) for the complete graph
(Aij = 1 for all i ̸= j).

5. (bonus) It may be tempting to consider the natural shortest path distance on G defined
by d(v, v′) = minN{(v0, . . . , vN) ⊂ V, v0 = v, vN = v′, (vi, vi+1) ∈ E for all i =
0, . . . , N−1} and build a kernel on G through Kij = e−d(vi,vj)

2 . Show that this approach
does not work (i.e. such a K may not be PSD).
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