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1 General rules

A part of the evaluation will be of the form of a project, evaluated through an
oral presentation (defense). There are two types of exercise: a “theoretical part”
where students are expected to choose a topic and propose an introduction to
it, and a “practical part” where one deal with a real-life dataset and attempt
at performing a machine learning task.

Students following both courses must cover both parts during their defense;
they will be graded evenly.

For students following only “theoretical foundations (...)” (resp. “computa-
tional foundations (...)”) should only cover the “theoretical” (resp. “practical”)
part. Naturally, such students are expected to go deeper during their presenta-
tion than student following both courses.

Students must gather by group of 3, and therefore students from a same
group should follow the same courses (both courses / only theoretical (...) /
only computational (...)). At most one group with less than 3 students will be
allowed for each profile.

The defenses will be 45 minutes long: 5 minutes to set-up, 30 minutes of
presentation, 10 minutes for questions.

2 Theoretical part

2.1 Random Fourier Features

Keywords: Positive definite kernels, spectral analysis
Positive definite kernels are used in many machine learning algorithms (Ker-

nel ridge regression, Gaussian Process Regression, SVM, . . . ). However, such
approaches are usually computationally expensive with a computational cost
scaling with the size of the training dataset used. To deal with this issue, [1]
proposed to replace classical kernels by random kernels generated randomly. For
this subject, we expect (at least):
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• A formal presentation of the random fourier features approach.

• A proof of Bochner’s Theorem, with the main arguments highlighted dur-
ing the oral presentation.

• A comparison of computational complexities between this approach and
a standard kernel approach for a given kernel-based algorithm.

In addition, a practical implementation in some cases would be highly
appreciated.

2.2 Gradient descent on manifold

Gradient descent on a Riemannian manifold extends classical optimization to
spaces with curved geometry. Unlike Euclidean spaces, where straight lines de-
fine directions, manifolds rely on geodesics curves that generalize straight lines.
In this setting, the algorithm iteratively minimizes a function f by updating
along the tangent spaces of the manifold, guided by the Riemannian gradient,
which incorporates the geometry through the manifold metric. After computing
the gradient in a local tangent space, the update is ”projected” back onto the
manifold via a retraction or exponential map.

We expect (at least) a presentation of the following concept:

• Formal definition of gradients in manifold (and related concepts),

• Situations in which such a problem appears.

In addition, a practical implementation in some cases would be highly appreci-
ated.

2.3 Sampling through score-based generative modeling

Keywords: Stochastic differential equations, Functional analysis
Sampling from an arbitrary measure µ on Rd is a difficult task unless µ

happens to be the d-dimensional Gaussian measure. A very recent approach to
this problem consists in finding a stochastic differential equation whose solution
is, after a large enough time, distributed following µ thus allowing to sample
from it.

The students are expected to do the following:

• Explain precisely what score-based generative modeling is about, the re-
lation with stochastic differential equations.

• Implement a basic score-based method to sample from 2D distribution.

• List all steps of the algorithm which would require studying in order to
obtain a theoretical understanding of the behavior of the algorithm.
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2.4 VC dimension

Keywords: Statistical learning theory
In order to guarantee the performance of a learning algorithm, we need to be

able to provide (probabilistic) guarantees on the accuracy of trained model. The
concept Vapnik–Chervonenkis dimension is one way to obtain such guarantees.

We expect (at least) a presentation of the following concept:

• Present the conception of Vapnik-Chernovenkis dimension.

• Show how it can be used to obtain guarantees on the performance of a
trained model. (While a theoretical proof is expected, it can be comple-
mented through simulations). In particular, main ingredients of the proof
should be presented during the oral presentation.

2.5 Spectral clustering

Keywords: Graph Theory, clustering
Spectral Clustering proposes a way to cluster nodes of a graph based on the

connectivity (adjacency matrix) of the graph. For this, it leverages the eigen-
values and eigenvectors of a graph Laplacian matrix constructed from pairwise
similarities.

We expect (at least) a presentation that includes the following:

• Present the spectral clustering algorithm, detailing key steps like con-
structing the similarity graph and computing the graph Laplacian.

• Show how this method can be viewed as a relaxation of a graph-cut algo-
rithm. (And why we need such a relaxation)

• Explain how this method can then be used to perform (for instance) k-
means in a usual Euclidean space.

• Propose an implementation to solve a simple problem, such as clustering
a synthetic dataset

2.6 Lasso Regression

Keywords: Linear regression, optimization
Linear regression in (very) high dimension is prevalent in many fields such as

genomics for instance. The problem one faces is that the dimension of the data
is usually much higher than the number of data points. One way to circumvent
this issue is to introduce a L1 regularization term in the loss function. The
estimator obtained is called a Lasso estimator.

We expect (at least) a presentation that includes the following:

• Present the Lasso regression framework.

• Discuss the optimization issues appearing in this framework.
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• Highlight the performance of Lasso estimators through simulations. In
particular, show how the influence of the regularization parameter on the
bias and on the variance of the obtained estimator.

2.7 Expectation-maximization applied to Gaussian mix-
ture models

Keywords: Density estimation, parametric estimation, clustering
Gaussian Mixture Models (GMM) assume that the data is generated from

a mixture of Gaussian distributions, each with its own mean, covariance, and
mixing proportion. Assuming that one observes a set (x1, . . . , xn) sampled from
a GMM, a natural question is to estimate the parameters (proportions, means
and covariances) of this GMM. This is typically done using a two-step algorithm:
the Expectation-Maximization (EM) scheme.

We expect (at least) a presentation that includes the following:

• Present formally GMMs, how to sample from them, etc.

• Explain how GMMs can be used to perform clustering,

• Implement the algorithm to fit a GMM to a synthetic dataset.

• Discuss the limitations of the approach.

3 Practice on a real-life dataset

Students must pick one of the following datasets (available on the elearning page
of the course) and attempt to solve a supervised learning problem on it.

Each dataset contains a train file.csv and a test file.csv. The sub-
tlety is that the test file.csv does not contain the true labels (but the
train file contains labels of course). You must submit on e-learning a file
prediction.csv that must be a single column csv file giving the predictions
of their model on the test set. These predictions will be confronted with the
corresponding test labels the day of the defense.

Models will be evaluated using either the square root of the MSE or the
accuracy, depending on the nature of the problem (therefore, pick the correct
loss for your problem!).

Students will be evaluated with respect to the following:

• Presentation of the problem, the dataset, etc.,

• Choice of the model(s), presenting what did work and what didn’t,

• Application of the supervised learning methodology,

• Actual performances of their model.

In particular, note that the actual performances of the model—though requested—
is not the only criterion for evaluation.
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Dataset 1: the Hotel Reservation Dataset. A dataset of hotel booking
describing the booking (number of adults, number of children, number of nights,
date, is it booked online, etc.) and the eventual status of the reservation (the
label): did the customer cancel the reservation?

Dataset 2: Star dataset. A set of astronomic observations representing
stellar objects that can be either Star, Galaxy, or Quasar Objects. Observations
are given as a set of measurements with respect to various wavelength (visible
color r,g,b, but also infrared filter, etc.) and other characteristics (angle of the
lens, etc.), its redshift, etc. The goal is to predict the nature of the observation
from these features.

Dataset 3: the DVF dataset. DVF is a French dataset recording real estate
transactions (during year 2021 for this dataset). Observations describe the
flat/house (localisation, surface, etc.), and the target variable is the price at
which the transaction was done.
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