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Organization of the course:
• 8× 3h (including break).
• Expected: 6 lectures (including exercises), 2 lab session.

Grading:
• Project (/8).
• Exam (/12).
• Bonus: +0.1 pts for each typo reported (send me an email). Max +1 pts.

Lab sessions: With Python via notebook Jupyter. You can bring your own laptop.

Material: On elearning (will be used as the main communication channel).

Disclaimer: Some illustrations are taken from a course I am teaching in French and thus may have a
French caption/legend... I will try to improve on this overtime; this does not count as a typo.
Also, I will not print the slides (and discourage you from doing so): 200+ pages with many typos...
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Outline:
• Chapter 0: Generalities.
• Chapter 1: Some practical tools.
• Chapter 2: Supervised learning (1).
• Chapter 3: An optimization detour.
• Chapter 4: Supervised-learning (2) : classification.
• Chapter 5: Unsupervised-learning.
• Chapter 6: Kernel methods.
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Chapter 0: Generalities and some terminology
Introduction : A data (datum?) is a piece of information recorded by a biological or artificial system. Data can appear
through different forms:
• A single number : heat (e.g. T = 38°C), height of someone (e.g. h = 178cm), binary variable (e.g. 1 if someone has

a driver license, 0 otherwise), etc.
• A collection of coordinates: GPS location (x, y) of some place, description (taille, poids, âge) of an individual, etc.
• But also much more complicated structures: words/text, graphs, etc.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 0 — (p. 2/38)

Chapter 0: Generalities and some terminology
Introduction : A data (datum?) is a piece of information recorded by a biological or artificial system. Data can appear
through different forms:
• A single number : heat (e.g. T = 38°C), height of someone (e.g. h = 178cm), binary variable (e.g. 1 if someone has

a driver license, 0 otherwise), etc.
• A collection of coordinates: GPS location (x, y) of some place, description (taille, poids, âge) of an individual, etc.
• But also much more complicated structures: words/text, graphs, etc.

California Housing dataset

S.F.

L.A.
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Chapter 0: Generalities and some terminology
Introduction : A data (datum?) is a piece of information recorded by a biological or artificial system. Data can appear
through different forms:
• A single number : heat (e.g. T = 38°C), height of someone (e.g. h = 178cm), binary variable (e.g. 1 if someone has

a driver license, 0 otherwise), etc.
• A collection of coordinates: GPS location (x, y) of some place, description (taille, poids, âge) of an individual, etc.
• But also much more complicated structures: words/text, graphs, etc.

California Housing dataset

S.F.

L.A.

Text: Amazon Review Dataset
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Chapter 0: Generalities and some terminology
Goal: Data Sciences aim at extracting information from data, in order to
• Understand some phenomena, such as:
• Data visualization (curves, histograms, etc.) for interpretability.
• Discovering relations between variables x and y : e.g. height ↔ weight, age ↔ efficiency/dangerosity of a medical

treatment, etc.
• Detect clusters: groups of data that share common properties.

• Make predictions on new data, such as:
• Guess a value: e.g. the price of a flat given the price of other flats.
• Take decisions: e.g. decide if an autonomous car should stop (1) or not (0).

• And many other things (data generation, reinforcement learning, etc.).
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Chapter 0: Generalities and some terminology
Goal: Data Sciences aim at extracting information from data, in order to
• Understand some phenomena, such as:
• Data visualization (curves, histograms, etc.) for interpretability.
• Discovering relations between variables x and y : e.g. height ↔ weight, age ↔ efficiency/dangerosity of a medical

treatment, etc.
• Detect clusters: groups of data that share common properties.

• Make predictions on new data, such as:
• Guess a value: e.g. the price of a flat given the price of other flats.
• Take decisions: e.g. decide if an autonomous car should stop (1) or not (0).

• And many other things (data generation, reinforcement learning, etc.).

In practice, data sciences involve
• maths (mostly statistics, linear algebra, and optimization theory).
• Algorithms (from maths to code).
• Computer science (with dedicated software—see Chapter 1).
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Chapter 0: Generalities and some terminology

Definition:

We say that we work with vectorized data if all the data belong to a common space Rd—d being the dimension
of the data. The coordinate of x ∈ Rd, denoted by x [i] (for i ∈ {1, . . . , d}) are typically called the features of x.
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Chapter 0: Generalities and some terminology

Definition:

We say that we work with vectorized data if all the data belong to a common space Rd—d being the dimension
of the data. The coordinate of x ∈ Rd, denoted by x [i] (for i ∈ {1, . . . , d}) are typically called the features of x.

Remark: With few exceptions, in this course, we will only consider vectorized data.
Why? Because the Euclidean space Rd comes with a linear structure: given x1, x2 ∈ Rd, you can compute
straightforwardly important quantities such as:
• 12 (x1 + x2) (middle point / average),
• x2 − x1 (difference), (then norms, etc.),
• more generally, Linear algebra (apply matrix A to transform your data in a simple way, etc.).

Things get (much) harder if you do not have access to such tools (how would you compute the difference between two
graphs? The average of several words?).
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Chapter 0: Generalities and some terminology

Definition:

A dataset is a collection of n data (“observations”) x1, . . . , xn ∈ Rd.

Remark: We will denote by xj [i] the ith feature of the jth observation in our dataset.

A dataset made of n observations in dimension d can equivalently be represented by a n× d matrix

X =
x1[1] . . . x1[d]

...
...

xn[1] . . . xn[d]
 . Number of observations n

Number of features d
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Chapter 0: Generalities and some terminology

Definition:

A dataset is a collection of n data (“observations”) x1, . . . , xn ∈ Rd.

Remark: We will denote by xj [i] the ith feature of the jth observation in our dataset.

Remark: Nowadays, we are often confronted to huge datasets (n ≃ 109) in high dimension (d ≃ 106). This is what we
call big data. Leveraging such datasets in practice requires specific methods (parallel computing, etc.). This will not be
covered by this course.

A dataset made of n observations in dimension d can equivalently be represented by a n× d matrix

X =
x1[1] . . . x1[d]

...
...

xn[1] . . . xn[d]
 . Number of observations n

Number of features d
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Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...
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Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...

Question : How to incorporate categorical data in some numerical analysis?
→ In practice, most machine learning models require the data to be purely vectorized. How to turn our categorical data
into vectors in a meaningful way?
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Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...

Question : How to incorporate categorical data in some numerical analysis?
→ In practice, most machine learning models require the data to be purely vectorized. How to turn our categorical data
into vectors in a meaningful way?

First idea: Assign an arbitrary number to all possible values. For instance, red → 1, blue → 2, etc.
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Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...

Question : How to incorporate categorical data in some numerical analysis?
→ In practice, most machine learning models require the data to be purely vectorized. How to turn our categorical data
into vectors in a meaningful way?

First idea: Assign an arbitrary number to all possible values. For instance, red → 1, blue → 2, etc.

Issue: This introduce some implicit geometry in your data that may fickle your models!
→ There is (a priori) no reason to consider that “red ⩽ blue ⩽ green”, or that “orange = 4× red”, etc.
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Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...

Question : How to incorporate categorical data in some numerical analysis?
→ In practice, most machine learning models require the data to be purely vectorized. How to turn our categorical data
into vectors in a meaningful way?
Second idea: Rely on one-hot encoding: if you have K possible values for the feature of interest (e.g. K colors), you can
represent the k-th category by the vector

(0, . . . , 0, 1, 0, . . . , 0) ∈ RK

k-th coordinate of the vector
For instance, if you have three colors red, blue, green:
red ↔ (1, 0, 0)
blue ↔ (0, 1, 0)
green ↔ (0, 0, 1)
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Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...

Question : How to incorporate categorical data in some numerical analysis?
→ In practice, most machine learning models require the data to be purely vectorized. How to turn our categorical data
into vectors in a meaningful way?
Second idea: Rely on one-hot encoding: if you have K possible values for the feature of interest (e.g. K colors), you can
represent the k-th category by the vector

(0, . . . , 0, 1, 0, . . . , 0) ∈ RK

k-th coordinate of the vector

Warning: The larger K , the larger the dimension of your one-hot-encoding (which can be an issue in some situations).



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 0 — (p. 16/38)

Chapter 0: Generalities and some terminology
Categorical data:

Definition:

A data is said to be categorical if (some of) its features take values in a finite set.

Example : a color set {red, blue, green, orange, white, black}, a city name, a university track...

Question : How to incorporate categorical data in some numerical analysis?
→ In practice, most machine learning models require the data to be purely vectorized. How to turn our categorical data
into vectors in a meaningful way?
Second idea: Rely on one-hot encoding: if you have K possible values for the feature of interest (e.g. K colors), you can
represent the k-th category by the vector

(0, . . . , 0, 1, 0, . . . , 0) ∈ RK

k-th coordinate of the vector

Remark: It may happen that we do not know all possible categories in advance. In that case, it can be convenient to
create the category “other”.
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Chapter 0: Generalities and some terminology
Descriptive statistics:
In practice, do not rush by applying sophisticated machine learning models immediately; it can be very useful to perform
some descriptive statistics on our dataset.
It is about looking for some standard quantities such as the mean, the variance / standard-deviation, the correlation
between features, the quantiles or conditional laws.

Do not neglect this preliminary phase. It often
allows you to “understand” your dataset, the
kind of issue you may face when doing further
analysis, etc.
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some descriptive statistics on our dataset.
It is about looking for some standard quantities such as the mean, the variance / standard-deviation, the correlation
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Chapter 0: Generalities and some terminology
Descriptive statistics:
In practice, do not rush by applying sophisticated machine learning models immediately; it can be very useful to perform
some descriptive statistics on our dataset.
It is about looking for some standard quantities such as the mean, the variance / standard-deviation, the correlation
between features, the quantiles or conditional laws.

Do not neglect this preliminary phase. It often
allows you to “understand” your dataset, the
kind of issue you may face when doing further
analysis, etc.

A word about correlation: The correlation between two variables/features X
and Y indicate if knowing Y gives some information on X ; we denote by X |Y the
relation “X given Y ”.
• Correlation close to 1 ⇒ “when Y increases, X tends to increase as well”
(e.g. X=weight, Y=height),
• close to −1 ⇒ “Y increases ↔ X decreases” (e.g. risk of heart attack | sport
practice),
• close to 0 : “no clear relation” (e.g. height | hour at which you were born).
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Chapter 0: Generalities and some terminology
Descriptive statistics:
In practice, do not rush by applying sophisticated machine learning models immediately; it can be very useful to perform
some descriptive statistics on our dataset.
It is about looking for some standard quantities such as the mean, the variance / standard-deviation, the correlation
between features, the quantiles or conditional laws.

Do not neglect this preliminary phase. It often
allows you to “understand” your dataset, the
kind of issue you may face when doing further
analysis, etc.

Warning, Do not confuse correlation and causality!

Example: X = life expectancy, Y = weekly reading time.
Observation: These variables are correlated (the more you read, the
more you live). But can you faithfully conclude that reading does
increase directly the life expectancy (everything else remaining
unchanged)?

Source : Le Figaro.

X = Life expectancy Y = Reading
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Chapter 0: Generalities and some terminology
Descriptive statistics:
In practice, do not rush by applying sophisticated machine learning models immediately; it can be very useful to perform
some descriptive statistics on our dataset.
It is about looking for some standard quantities such as the mean, the variance / standard-deviation, the correlation
between features, the quantiles or conditional laws.

Do not neglect this preliminary phase. It often
allows you to “understand” your dataset, the
kind of issue you may face when doing further
analysis, etc.

Warning, Do not confuse correlation and causality!

Example: X = life expectancy, Y = weekly reading time.
Observation: These variables are correlated (the more you read, the
more you live). But can you faithfully conclude that reading does
increase directly the life expectancy (everything else remaining
unchanged)?

Source : Le Figaro.

X = Life expectancy Y = Reading

Z = “hidden variables” (social
and economic background,
leisure time, etc.).
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Supervised learning: For each observation xj ∈ X = Rd, we are also given a corresponding label yj ∈ Y.
The goal is to design a model F : X → Y such that F (xj ) ≃ yj on average. Formally, we search F that would minimize

1
n

n∑
j=1 ℓ(F (xj ), yj ), (1)

where ℓ is a loss function that measures the discrepancy between a prediction F (xj ) and the expected label yj .
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Supervised learning: For each observation xj ∈ X = Rd, we are also given a corresponding label yj ∈ Y.
The goal is to design a model F : X → Y such that F (xj ) ≃ yj on average. Formally, we search F that would minimize

1
n

n∑
j=1 ℓ(F (xj ), yj ), (1)

where ℓ is a loss function that measures the discrepancy between a prediction F (xj ) and the expected label yj .

Example 1: Predict the weight of someone (label) given their height (observation).
One possible model is to take the height x ∈ X = R and to multiply it by a parameter θ ∈ R. Hopefully, one has
θ · x ≃ y, the corresponding weight. We will often chose the loss function to be ℓ(F (x), y) = ||F (x)− y||2. In that case,
our goal is therefore to find θ that minimizes

θ 7→ L(θ) = 1
n

n∑
j=1 ||θ · xj − yj ||

2.
L is called the objective function, and (because ℓ = ||· − ·||2) is called here the mean squared error (MSE).
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Supervised learning: For each observation xj ∈ X = Rd, we are also given a corresponding label yj ∈ Y.
The goal is to design a model F : X → Y such that F (xj ) ≃ yj on average. Formally, we search F that would minimize

1
n

n∑
j=1 ℓ(F (xj ), yj ), (1)

where ℓ is a loss function that measures the discrepancy between a prediction F (xj ) and the expected label yj .

Example 2: Predict, given the desciption of an email x (sender, date, content) if it is a spam (y = 1) or not (y = 0).
We can evaluate a model F by counting the number of errors it makes, that is when F (xj ) ̸= yj , yielding

1
n

n∑
j=1 1F (xj ) ̸=yj .

An example of (naive) model would be to say F (x) = 1 in the email x includes “Congratulations, you won!” and 0
otherwise.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Unsupervised learning: When you do not have labels. In that case, the objective function depends only on the
observations.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Unsupervised learning: When you do not have labels. In that case, the objective function depends only on the
observations.

Example 1: We are given observations x1, . . . , xn ∈ Rd and we seek for a representative x̂ that would be close, on
average and for the squared Euclidean loss, from the (xj )nj=1. It should thus minimize the objective function

x 7→ 1
n

n∑
j=1 ||xj − x||

2, for x ∈ Rd.

Exercise: Determine the expression of the optimal x̂. What if we had chosen ℓ = ||· − ·||? (no square) And ℓ = ||· − ·||p
for p > 1 (but p ̸= 2)?
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Unsupervised learning: When you do not have labels. In that case, the objective function depends only on the
observations.

Example 2: dimensionality reduction. Assume that we are given a dataset X ∈ Rn×D (n observations in dimension D)
with D large. For various reasons (visualization, computational efficiency...), one may want to “approximate” X by a
lower dimensional object X̂ ∈ Rn×d, with d≪ D.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

Supervised
⊕ We have a ground truth and a clear objective.

We can precisely measure “how good” is our
model and estimate the probability that its
predictions are correct/close to the true value.

⊖ We need actual labels to train and test our
model. Producing labels is demanding, and
concerning in itself in some cases.

→ Most common situation in practice.

Unsupervised
⊕ No need for labels. Recording data is

sufficient.
⊖ Hard to evaluate a given model, say that a

model is better than another one. We do not
know what the best possible model is; how
good or bad we currently are.

→ Mostly used in exploratory phases, or as a
preprocessing.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

The machine learning routine: Roughly speaking, addressing a machine learning task goes in the following way:
1. Collect observations (and labels). Split them into two groups: the training set and the test set (or validation set).
2. Fix an objective (here, classify blue points vs. red points).
3. Chose a class of models (here, a logistic regression, see later).
4. Train your model so that it adapts to the specificity of this dataset.
5. Test your model on the test set.
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The machine learning routine: Roughly speaking, addressing a machine learning task goes in the following way:
1. Collect observations (and labels). Split them into two groups: the training set and the test set (or validation set).
2. Fix an objective (here, classify blue points vs. red points).
3. Chose a class of models (here, a logistic regression, see later).
4. Train your model so that it adapts to the specificity of this dataset.
5. Test your model on the test set.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

The machine learning routine: Roughly speaking, addressing a machine learning task goes in the following way:
1. Collect observations (and labels). Split them into two groups: the training set and the test set (or validation set).
2. Fix an objective (here, classify blue points vs. red points).
3. Chose a class of models (here, a logistic regression, see later).
4. Train your model so that it adapts to the specificity of this dataset.
5. Test your model on the test set.
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Chapter 0: Generalities and some terminology
Learning: Aside from data visualization, most tasks in data sciences are machine learning (ML) tasks.
There are two main categories of ML tasks: supervised learning and unsupervised learning.

The machine learning routine: Roughly speaking, addressing a machine learning task goes in the following way:
1. Collect observations (and labels). Split them into two groups: the training set and the test set (or validation set).
2. Fix an objective (here, classify blue points vs. red points).
3. Chose a class of models (here, a logistic regression, see later).
4. Train your model so that it adapts to the specificity of this dataset.
5. Test your model on the test set.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 0 — (p. 36/38)

Chapter 0: Generalities and some terminology
• On the difference between “statistical learning” and “machine learning”.

What we’ll do in this class.What you do with T. Bonis in “mathematical
foundation for Data Sciences”

→ Work in an abstract / hypothetical setting
where observations X ∈ P(X) (and possible labels
Y ∈ P(Y)) are random variables (following a joint
law), consider class of models F , and try to
minimize quantities like

min
f∈F

E[ℓ(f (X ), Y )].
For instance, if ℓ(x, y) := |x − y|2, and F is the set
of any (measurable) functions from X to Y, you’ll
learn that the optimal f∗ is given by
f∗(x) = E[Y |X = x ].
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Chapter 0: Generalities and some terminology
• On the difference between “statistical learning” and “machine learning”.

What we’ll do in this class.

→ We have a realization of observations x1, . . . , xn
(and possible labels y1, . . . , yn), and try to find a
model f ∈ F that is good on these observations.
In statistical terms, we will compute an estimator f̂n
based on the (xi)i and (yi)i, and provided n is large
and assuming that xi, yi ∼iid X, Y , we may expect
(hope...) that f̂n ≃ f∗.
Machine learning can be thought as “empirical
statistical learning”.

What you do with T. Bonis in “mathematical
foundation for Data Sciences”

→ Work in an abstract / hypothetical setting
where observations X ∈ P(X) (and possible labels
Y ∈ P(Y)) are random variables (following a joint
law), consider class of models F , and try to
minimize quantities like

min
f∈F

E[ℓ(f (X ), Y )].
For instance, if ℓ(x, y) := |x − y|2, and F is the set
of any (measurable) functions from X to Y, you’ll
learn that the optimal f∗ is given by
f∗(x) = E[Y |X = x ].
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Chapter 0: Generalities and some terminology
• On the difference between “statistical learning” and “machine learning”.

What we’ll do in this class.

→ We have a realization of observations x1, . . . , xn
(and possible labels y1, . . . , yn), and try to find a
model f ∈ F that is good on these observations.
In statistical terms, we will compute an estimator f̂n
based on the (xi)i and (yi)i, and provided n is large
and assuming that xi, yi ∼iid X, Y , we may expect
(hope...) that f̂n ≃ f∗.
Machine learning can be thought as “empirical
statistical learning”.

What you do with T. Bonis in “mathematical
foundation for Data Sciences”

→ Work in an abstract / hypothetical setting
where observations X ∈ P(X) (and possible labels
Y ∈ P(Y)) are random variables (following a joint
law), consider class of models F , and try to
minimize quantities like

min
f∈F

E[ℓ(f (X ), Y )].
For instance, if ℓ(x, y) := |x − y|2, and F is the set
of any (measurable) functions from X to Y, you’ll
learn that the optimal f∗ is given by
f∗(x) = E[Y |X = x ].

There will be redundancy (with different perspectives)
between the two courses, but also differences in the type of
problems we consider. For instance, an important question
in ML is to learn f̂n, which is an optimization problem.
→ How do we compute f̂n based on the obs/labels? What
guarantees do we have?
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Chapter 1: Some tools for data science
We present some standard tools used routinely in data science, all developed in Python.

Why Python? It is the reference programming language for the exploratory part of data science.
Advantages : Very easy to get started (script), many free and open-source libraries, nice development interface using
Jupyter-notebook, environment management using pip and conda, etc.
Drawbacks : Possibly slow, non-typed (⇒ easy to get bugs). One may prefer more robust programming languages
(Java,C++,Scala...) when deployed in production.
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Chapter 1: Some tools for data science
We present some standard tools used routinely in data science, all developed in Python.

Why Python? It is the reference programming language for the exploratory part of data science.
Advantages : Very easy to get started (script), many free and open-source libraries, nice development interface using
Jupyter-notebook, environment management using pip and conda, etc.
Drawbacks : Possibly slow, non-typed (⇒ easy to get bugs). One may prefer more robust programming languages
(Java,C++,Scala...) when deployed in production.

Conda: We suggest that you use anaconda to manage your environment: where you define all the libraries you use, the
corresponding versions, etc. You can find on elearning a file entitled datascience.yml that describes the conda
environment used in this class. You can replicate it on your laptop using
$ conda env create -f datascience.yml
in a terminal.
You can also work with other tools (e.g. pip).
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Chapter 1: Some tools for data science
We present some standard tools used routinely in data science, all developed in Python.

Why Python? It is the reference programming language for the exploratory part of data science.
Advantages : Very easy to get started (script), many free and open-source libraries, nice development interface using
Jupyter-notebook, environment management using pip and conda, etc.
Drawbacks : Possibly slow, non-typed (⇒ easy to get bugs). One may prefer more robust programming languages
(Java,C++,Scala...) when deployed in production.

Jupyter Notebook/Lab: We will work with notebook Jupyter. It provides a very convenient interface to code in Python
in a "dynamic" way.

Conda: We suggest that you use anaconda to manage your environment: where you define all the libraries you use, the
corresponding versions, etc. You can find on elearning a file entitled datascience.yml that describes the conda
environment used in this class. You can replicate it on your laptop using
$ conda env create -f datascience.yml
in a terminal.
You can also work with other tools (e.g. pip).
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Chapter 1: Some tools for data science

• NumPy (import numpy as np):
This is the reference library for numerics. It enables efficient manipulation of array (vectors, matrices...).

Here is a short presentation of the libraries we will use in this course.
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• NumPy (import numpy as np):
This is the reference library for numerics. It enables efficient manipulation of array (vectors, matrices...).

Here is a short presentation of the libraries we will use in this course.

• matplotlib (import matplotlib.pyplot as plt)
Standard libraries for plot in Python. Perfect interface with NumPy.
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Chapter 1: Some tools for data science

• NumPy (import numpy as np):
This is the reference library for numerics. It enables efficient manipulation of array (vectors, matrices...).

Here is a short presentation of the libraries we will use in this course.

• SciPy:
Extension of NumPy with more advanced scientific calculus (matrix reduction, Fourier transform, graphs manipulation,
etc.); perfect interface with NumPy.

• matplotlib (import matplotlib.pyplot as plt)
Standard libraries for plot in Python. Perfect interface with NumPy.
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Chapter 1: Some tools for data science
Here is a short presentation of the libraries we will use in this course.

• pandas:
Library to manage and visualize datasets, encoded as dataframe.
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Chapter 1: Some tools for data science
Here is a short presentation of the libraries we will use in this course.

• pandas:
Library to manage and visualize datasets, encoded as dataframe.

• scikit-learn :
The reference library for every “basic” machine learning model.
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Chapter 1: Some tools for data science
Here is a short presentation of the libraries we will use in this course.

• pandas:
Library to manage and visualize datasets, encoded as dataframe.

• scikit-learn :
The reference library for every “basic” machine learning model.

• jax :
Developed by Google Brain. A library dedicated to optimization, and leveraging nicely automatic differentiation. Pretty
well designed for mathematicians!
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Chapter 1: Some tools for data science
Here is a short presentation of the libraries we will use in this course.

• pandas:
Library to manage and visualize datasets, encoded as dataframe.

• scikit-learn :
The reference library for every “basic” machine learning model.

• tensorflow et pytorch:
Respectively developed by Google Brain (Alphabet) and Meta (previously Facebook), these two libraries are dedicated to
neural networks. They will not be used in this introductory course, but will be used in the optional course dedicated to
Deep Learning in the next semester.

• jax :
Developed by Google Brain. A library dedicated to optimization, and leveraging nicely automatic differentiation. Pretty
well designed for mathematicians!
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Chapter 2: Supervised Learning (1) - Regression
This chapter is dedicated to a large class of supervised learning problems: regression problems.
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Chapter 2: Supervised Learning (1) - Regression
This chapter is dedicated to a large class of supervised learning problems: regression problems.

Reminder : Supervised learning problems are described through observations x1, . . . , xn ∈ Rd, and labels y1, . . . , yn ∈ Y.
Formally, we assume that they are i.i.d. data following a joint law Γ. Our goal is to design a model F : Rd → Y such
that E(x,y)∼Γ[ℓ(F (x), y)] is small for the chosen loss function ℓ .
In practice, Γ is unknown, so we replace the above expectation by its empirical counterpart using our training data, that
is 1

n
∑n

i=1 ℓ(F (xi), yi).
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Chapter 2: Supervised Learning (1) - Regression
This chapter is dedicated to a large class of supervised learning problems: regression problems.

Reminder : Supervised learning problems are described through observations x1, . . . , xn ∈ Rd, and labels y1, . . . , yn ∈ Y.
Formally, we assume that they are i.i.d. data following a joint law Γ. Our goal is to design a model F : Rd → Y such
that E(x,y)∼Γ[ℓ(F (x), y)] is small for the chosen loss function ℓ .
In practice, Γ is unknown, so we replace the above expectation by its empirical counterpart using our training data, that
is 1

n
∑n

i=1 ℓ(F (xi), yi).
Definition:

When the labels are quantitative variables, that is Y = Rk , k ⩾ 1, we say that we are addressing a regression task.
In that case, a typical choice of loss function is ℓ(F (x), y) = ||F (x)− y||2, inducing the mean squared error.

As detailed in Chapter 4, the other fundamental scenario is when the labels are categorical variables (i.e. Y is finite; e.g. color, type of animal,
etc.), in which case we say that we are addressing a classification problem.
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Chapter 2: Supervised Learning (1) - Regression
This chapter is dedicated to a large class of supervised learning problems: regression problems.

Reminder : Supervised learning problems are described through observations x1, . . . , xn ∈ Rd, and labels y1, . . . , yn ∈ Y.
Formally, we assume that they are i.i.d. data following a joint law Γ. Our goal is to design a model F : Rd → Y such
that E(x,y)∼Γ[ℓ(F (x), y)] is small for the chosen loss function ℓ .
In practice, Γ is unknown, so we replace the above expectation by its empirical counterpart using our training data, that
is 1

n
∑n

i=1 ℓ(F (xi), yi).
Definition:

When the labels are quantitative variables, that is Y = Rk , k ⩾ 1, we say that we are addressing a regression task.
In that case, a typical choice of loss function is ℓ(F (x), y) = ||F (x)− y||2, inducing the mean squared error.

As detailed in Chapter 4, the other fundamental scenario is when the labels are categorical variables (i.e. Y is finite; e.g. color, type of animal,
etc.), in which case we say that we are addressing a classification problem.

Examples: Predict the age of someone y ∈ R, a GPS position (y1, y2) ∈ R2, the price y ∈ R of an appartment... → Regression.
Predict if a drug is dangerous (y = 0) or not (y = 1), if a picture represent a cat, a dog or else... → Classification.
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.
This is the simplest regression model one could consider. Consider observations x1, . . . , xn ∈ R (1D) with corresponding
labels y1, . . . , yn ∈ R (1D as well). For instance: height and weight of someone.
The simplest model consists of assuming that y is mostly proportional to x, that is there exists θ ∈ R such that
y ≃ θ · x = Fθ(x). We say that Fθ is a parametric model.
The goal is to find the best θ possible with respect to the MSE. We thus want to minimize the objective function

L : θ 7→ 1
n

n∑
i=1 (θxi − yi)2. (2)
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.
This is the simplest regression model one could consider. Consider observations x1, . . . , xn ∈ R (1D) with corresponding
labels y1, . . . , yn ∈ R (1D as well). For instance: height and weight of someone.
The simplest model consists of assuming that y is mostly proportional to x, that is there exists θ ∈ R such that
y ≃ θ · x = Fθ(x). We say that Fθ is a parametric model.
The goal is to find the best θ possible with respect to the MSE. We thus want to minimize the objective function

L : θ 7→ 1
n

n∑
i=1 (θxi − yi)2. (2)

Exercise: Find the expression of the optimal θ.
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1. Linear regression.
This is the simplest regression model one could consider. Consider observations x1, . . . , xn ∈ R (1D) with corresponding
labels y1, . . . , yn ∈ R (1D as well). For instance: height and weight of someone.
The simplest model consists of assuming that y is mostly proportional to x, that is there exists θ ∈ R such that
y ≃ θ · x = Fθ(x). We say that Fθ is a parametric model.
The goal is to find the best θ possible with respect to the MSE. We thus want to minimize the objective function

L : θ 7→ 1
n

n∑
i=1 (θxi − yi)2. (2)

Exercise: Find the expression of the optimal θ.
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.
This is the simplest regression model one could consider. Consider observations x1, . . . , xn ∈ R (1D) with corresponding
labels y1, . . . , yn ∈ R (1D as well). For instance: height and weight of someone.
The simplest model consists of assuming that y is mostly proportional to x, that is there exists θ ∈ R such that
y ≃ θ · x = Fθ(x). We say that Fθ is a parametric model.
The goal is to find the best θ possible with respect to the MSE. We thus want to minimize the objective function

L : θ 7→ 1
n

n∑
i=1 (θxi − yi)2. (2)

Exercise: Find the expression of the optimal θ.

In Short:

Observations and labels are fixed, and learning is about optimizing the
parameters of the model in order to minimize the training loss.
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.
The previous example is about observations and labels in 1D. We can generalize to more complex data (in higher
dimension) in the following way:

Definition:

Let x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ Rk be a dataset of observations and labels.
A linear regression is a model parametrized by a matrix A ∈ Rk×d and a vector (called bias or intercept) b ∈ Rk of the form

FA,b(x) = A · x + b. (3)

Training a linear regression amounts to minimizing the following objective function:

(A, b) 7→ n∑
i=1 ||Axi + b− yi||2 (4)
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.
The previous example is about observations and labels in 1D. We can generalize to more complex data (in higher
dimension) in the following way:

Definition:

Let x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ Rk be a dataset of observations and labels.
A linear regression is a model parametrized by a matrix A ∈ Rk×d and a vector (called bias or intercept) b ∈ Rk of the form

FA,b(x) = A · x + b. (3)

Training a linear regression amounts to minimizing the following objective function:

(A, b) 7→ n∑
i=1 ||Axi + b− yi||2 (4)

In Short:

We are looking for a linear combinaison of the features that allows us to retrieve the labels. For instance (random values for the sake
of illustration), a linear regression may explain that the weight of somebody can be approximated by 2.4 × height + 0.5 × age − 0.2 ×
h sport / week + 1.2. Here, A = (2.4, 0.5,−0.2) ∈ R3×1 and b = 1.2 ∈ R (because our labels are in dimension 1).
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.
The previous example is about observations and labels in 1D. We can generalize to more complex data (in higher
dimension) in the following way:

Definition:

Let x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ Rk be a dataset of observations and labels.
A linear regression is a model parametrized by a matrix A ∈ Rk×d and a vector (called bias or intercept) b ∈ Rk of the form

FA,b(x) = A · x + b. (3)

Training a linear regression amounts to minimizing the following objective function:

(A, b) 7→ n∑
i=1 ||Axi + b− yi||2 (4)

Remark: Observe that Ax + b = (A, b) · (x1). Therefore, the bias term can be encompassed in the matrix A by

“augmenting” the training observations (adding a 1 as last coordinate).
→ In a nutshell, the bias can be ignored in theoretical analysis (and is often automatically added in implementation).
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.

Theorem:

Given a dataset X =
x1[1] . . . x1[d] 1

...
xn[1] . . . xn[d] 1

 ∈ Rn×(d+1) and y =
y1

...
yn

 ∈ Rn×k . Assume that XTX is

non-singular (invertible). Let M = (Ab) ∈ R(d+1)×k .
The optimal parameter M∗ for the linear regression of X, Y—that is the minimizer of L : M 7→ ||XM−y||22, where
||U||22 = Tr(UUT ) denotes the (squared) Froebenius norm of a matrix—is given by

M∗ = (XTX )−1XTy.
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.

Theorem:

Given a dataset X =
x1[1] . . . x1[d] 1

...
xn[1] . . . xn[d] 1

 ∈ Rn×(d+1) and y =
y1

...
yn

 ∈ Rn×k . Assume that XTX is

non-singular (invertible). Let M = (Ab) ∈ R(d+1)×k .
The optimal parameter M∗ for the linear regression of X, Y—that is the minimizer of L : M 7→ ||XM−y||22, where
||U||22 = Tr(UUT ) denotes the (squared) Froebenius norm of a matrix—is given by

M∗ = (XTX )−1XTy.

Exercise: Prove this theorem.
Interpret the assumption “XTX is invertible” in three different ways:
• In algebraic terms (what can you say about the equation satisfied by M∗?),
• In analytic terms (what can you say about the loss function L?),
• In geometric terms (“what’s the shape of X?”).
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.

Theorem:

Given a dataset X =
x1[1] . . . x1[d] 1

...
xn[1] . . . xn[d] 1

 ∈ Rn×(d+1) and y =
y1

...
yn

 ∈ Rn×k . Assume that XTX is

non-singular (invertible). Let M = (Ab) ∈ R(d+1)×k .
The optimal parameter M∗ for the linear regression of X, Y—that is the minimizer of L : M 7→ ||XM−y||22, where
||U||22 = Tr(UUT ) denotes the (squared) Froebenius norm of a matrix—is given by

M∗ = (XTX )−1XTy.

Exercise: Prove this theorem.
Interpret the assumption “XTX is invertible” in three different ways:
• In algebraic terms (what can you say about the equation satisfied by M∗?),
• In analytic terms (what can you say about the loss function L?),
• In geometric terms (“what’s the shape of X?”).
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Chapter 2: Supervised Learning (1) - Regression
1. Linear regression.

Theorem:

Given a dataset X =
x1[1] . . . x1[d] 1

...
xn[1] . . . xn[d] 1

 ∈ Rn×(d+1) and y =
y1

...
yn

 ∈ Rn×k . Assume that XTX is

non-singular (invertible). Let M = (Ab) ∈ R(d+1)×k .
The optimal parameter M∗ for the linear regression of X, Y—that is the minimizer of L : M 7→ ||XM−y||22, where
||U||22 = Tr(UUT ) denotes the (squared) Froebenius norm of a matrix—is given by

M∗ = (XTX )−1XTy.

In Short:

We have access to a closed form for the optimal parameter of a linear regression. We will see that this is not always the case when
dealing with more complicated models. It is thus easy to numerically solve this problem.

In practice: You can use the class LinearRegression() of the module sklearn.linear_model.
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Of course, there is no reason to always assume that our data follow a linear relation y ≃ Ax.
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Of course, there is no reason to always assume that our data follow a linear relation y ≃ Ax.

It is natural to generalize the linear regression to have more expressive
models (able to learn more subtle relations).
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Of course, there is no reason to always assume that our data follow a linear relation y ≃ Ax.

Definition:

Assume that X = R and Y = R (observations and labels in dimension1). A polynomial regression of degree p consists of training a model F
depending on p+ 1 parameters θ = (θ0, . . . , θp) ∈ Rp+1 of the form

Fθ(x) = θ0 + θ1x + θ2x2 + · · ·+ θpxp. (5)

It is natural to generalize the linear regression to have more expressive
models (able to learn more subtle relations).
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Of course, there is no reason to always assume that our data follow a linear relation y ≃ Ax.

Definition:

Assume that X = R and Y = R (observations and labels in dimension1). A polynomial regression of degree p consists of training a model F
depending on p+ 1 parameters θ = (θ0, . . . , θp) ∈ Rp+1 of the form

Fθ(x) = θ0 + θ1x + θ2x2 + · · ·+ θpxp. (5)

But... if we let x ′ = (1, x, . . . , xp) ∈ Rp+1, the problem boils down to a linear regression of dimension d = p+ 1 for the
observations, and k = 1 for the labels! We can thus find the optimal θ using the previous theorem on this “augmented”
dataset.

It is natural to generalize the linear regression to have more expressive
models (able to learn more subtle relations).
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
In practice: We build the “augmented data” x ′ = (1, x, x2, . . . , xp) using the class PolynomialFeatures() of
sklearn.preprocessing, then simply run a LinearRegression().
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
In practice: We build the “augmented data” x ′ = (1, x, x2, . . . , xp) using the class PolynomialFeatures() of
sklearn.preprocessing, then simply run a LinearRegression().

Easy!
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Last step: chose the degree p...
Note: p is not optimized during the training. This is a parameter that is chosen by the user (you) from the start. Such
parameters (not optimized) are called hyperparameters.
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Chapter 2: Supervised Learning (1) - Regression
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Last step: chose the degree p...

Exercise: Prove that increasing the
maximal degree d always decreases the
objective loss after training.
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2. Polynomial regression
Last step: chose the degree p...

Exercise: Prove that increasing the
maximal degree d always decreases the
objective loss after training.
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Chapter 2: Supervised Learning (1) - Regression
2. Polynomial regression
Last step: chose the degree p...

Core idea: Increasing the complexity (∼ number of parameters) of a model will always make it more expressive : the
loss will always get smaller on the training data if we minimize over a larger class of models.
Here, the set of polynomials of degree ⩽ 15 is larger and can better adapt to the training data that polynomials of
degree ⩽ 2. It does not mean that this model is better/more useful in practical application, even though the loss is
smaller! How to handle that?

Exercise: Prove that increasing the
maximal degree d always decreases the
objective loss after training.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 2 — (p. 28/47)

Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...
Core idea: What is the real issue with the (optimal) polynomial of degree p = 25? Why is it
not useful in practice?
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...
Core idea: What is the real issue with the (optimal) polynomial of degree p = 25? Why is it
not useful in practice?

Because it cannot generalize.
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...
Core idea: What is the real issue with the (optimal) polynomial of degree p = 25? Why is it
not useful in practice?

Because it cannot generalize.

Definition:

We say that a model can generalize if it can produce valid predictions on new data that are following the same
law Γ as the training observations.
In practice, we split randomly our observations in two groups :
• The training set: the one that will be used to optimize the parameters of our models by minimizing the training

loss Ltrain.
• The test set (or validation set) on which we simply evaluate the performance of the model (test/validation

loss).
Whenever the training loss is small but the test loss is high, we say that our model is overfitting.
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...
In practice : You can use the method train_test_split of the module sklearn.model_selection. A common
practice is to put 75% of the data in the train set and 25% in the test set.
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3. Training, Testing and Overfitting...
In practice : You can use the method train_test_split of the module sklearn.model_selection. A common
practice is to put 75% of the data in the train set and 25% in the test set.
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...
In practice : You can use the method train_test_split of the module sklearn.model_selection. A common
practice is to put 75% of the data in the train set and 25% in the test set.

High training loss: the
model is too simple to
properly learn the
relationship between
observations and labels.

The test loss is much larger than
the training loss: this is overfitting
due to the model being too
complex.

The training and test losses are low
and of similar order of magnitude:
this is promising!
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...

In Short:

Once you have trained your model and provided that it achieves a reasonnably low training loss, you must test it by looking at its
performances on observations that were not seen during the training phase (but distributed similarly to the training set).

Step 0: Collect observations and
labels (xi, yi)i

Data (obs+labels)
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...

In Short:

Once you have trained your model and provided that it achieves a reasonnably low training loss, you must test it by looking at its
performances on observations that were not seen during the training phase (but distributed similarly to the training set).

Step 0: Collect observations and
labels (xi, yi)i

Data (obs+labels)

(Class of) model

(Fθ)θ
Step 1: Chose a class of models
(e.g. linear regressions)
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...

In Short:

Once you have trained your model and provided that it achieves a reasonnably low training loss, you must test it by looking at its
performances on observations that were not seen during the training phase (but distributed similarly to the training set).

Step 0: Collect observations and
labels (xi, yi)i

Step 2: Split the train set and
the test set.

Data (obs+labels)

(Class of) model

(Fθ)θ train set

Step 1: Chose a class of models
(e.g. linear regressions)

test set
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...

In Short:

Once you have trained your model and provided that it achieves a reasonnably low training loss, you must test it by looking at its
performances on observations that were not seen during the training phase (but distributed similarly to the training set).

Step 0: Collect observations and
labels (xi, yi)i

Step 2: Split the train set and
the test set.

Step 3: Train (optimize the
parameters) your model on the
train set.

Data (obs+labels)

(Class of) model

(Fθ)θ train set

Step 1: Chose a class of models
(e.g. linear regressions) Fθ∗

Trained model

test set
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...

In Short:

Once you have trained your model and provided that it achieves a reasonnably low training loss, you must test it by looking at its
performances on observations that were not seen during the training phase (but distributed similarly to the training set).

Step 0: Collect observations and
labels (xi, yi)i

Step 2: Split the train set and
the test set.

Step 3: Train (optimize the
parameters) your model on the
train set.

Step 4: We evaluate our model
on the test set

Data (obs+labels)

(Class of) model

(Fθ)θ train set

Step 1: Chose a class of models
(e.g. linear regressions) Fθ∗

Trained model

test set
Test score
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Chapter 2: Supervised Learning (1) - Regression
3. Training, Testing and Overfitting...

In Short:

Once you have trained your model and provided that it achieves a reasonnably low training loss, you must test it by looking at its
performances on observations that were not seen during the training phase (but distributed similarly to the training set).

Step 0: Collect observations and
labels (xi, yi)i

Step 2: Split the train set and
the test set.

Step 3: Train (optimize the
parameters) your model on the
train set.

Step 4: We evaluate our model
on the test set

Step 5: And if we want to be sure that our performances
are not biased by a “lucky” split, we repeat Steps 2—4
several times. Then, we report the average validation
loss and its standard deviation on the different trials.

Data (obs+labels)

(Class of) model

(Fθ)θ train set

Step 1: Chose a class of models
(e.g. linear regressions) Fθ∗

Trained model

test set
Test score
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Chapter 2: Supervised Learning (1) - Regression
4. Mitigating overfitting: regularization.
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Chapter 2: Supervised Learning (1) - Regression
4. Mitigating overfitting: regularization.
Intuitive idea: Allow for complex models (large space of parameters) but penalize the use of large parameters (which
typically induce irregularity in your model).
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Chapter 2: Supervised Learning (1) - Regression
4. Mitigating overfitting: regularization.
Intuitive idea: Allow for complex models (large space of parameters) but penalize the use of large parameters (which
typically induce irregularity in your model).

Definition:

Let X ∈ Rn×d be a set of n observations in dimension d, and Y ∈ Rn×k be a corresponding set of labels.
The p-regularized (or penalized) Linear Regression (for p ⩾ 1) with parameter M∗ ∈ Rd×k is defined as x 7→ xM∗
where M∗ is the minimizer of

M 7→ ||XM − Y ||22 + λ||M||pp,

where λ > 0 is an hyper-parameter.
When p = 1, this model is referred to as the Lasso regression, when p = 2 it is referred to as the Ridge regression.
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Chapter 2: Supervised Learning (1) - Regression
4. Mitigating overfitting: regularization.
Intuitive idea: Allow for complex models (large space of parameters) but penalize the use of large parameters (which
typically induce irregularity in your model).

Example: In the context of polynomial regression
(k = 1), M = (θ0, . . . , θd) which are the
coefficients of the polynom we learn. Penalizing
large norm for M means favoring small
coefficients, that is small variations ⇒ more
regularity.

Don’t over-regularize

Don’t use too complex
models without regularization
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Chapter 2: Supervised Learning (1) - Regression
4. Mitigating overfitting: regularization.
Intuitive idea: Allow for complex models (large space of parameters) but penalize the use of large parameters (which
typically induce irregularity in your model).

Definition:

Let X ∈ Rn×d be a set of n observations in dimension d, and Y ∈ Rn×k be a corresponding set of labels.
The p-regularized (or penalized) Linear Regression (for p ⩾ 1) with parameter M∗ ∈ Rd×k is defined as x 7→ xM∗
where M∗ is the minimizer of

M 7→ ||XM − Y ||22 + λ||M||pp,

where λ > 0 is an hyper-parameter.
When p = 1, this model is referred to as the Lasso regression, when p = 2 it is referred to as the Ridge regression.

Proposition:

Assuming that the matrix XTX + λnIdd is non-singular, the optimal M∗ for the Ridge regression is given by

M∗ = (XTX + λnIdd)−1XTY .
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Chapter 2: Supervised Learning (1) - Regression
5. About other regression models.
Of course, linear models are just (very important) examples among the broad variety of machine learning models dedicated to regression tasks.
For different models proposed by scikit-learn, we can mention:
• The k-nearest-neighbors model (see lab): to a new observation x we assign the value F (x) = (yi1 + yi2 + · · ·+ yik )/k where xi1 , . . . , xik are

the k observations in the training set that are the closest to x. Observe that :
– The parameter k is chosen once for all (hyper-parameter).
– This model is (trainable) parameter-less, it does not need to be trained!

• Decision trees : they “cut” the space using a series of thresholds (that are learned during training).

Illustration of a decision tree (sklearn)
Illustration of a k-NN regression (sklearn)
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Chapter 2: Supervised Learning (1) - Regression
6. About the optimization of the parameters...
As explained before, the parameters θ of a regression model must be optimized to be adapted to training data (the
“learning” phase)—the goal being to minimize an objective function that assess if our model is able to relate the
observations xi to their corresponding labels yi on the training set.
When our model F is a linear (or polynomial) model trained to minimize the MSE, we have access to an explicit
formula for the optimal parameter θ based on the training data. But this is not always the case.

Question : Given training observations (xi)i and labels (yi)i, a parametric model Fθ : x 7→ Fθ(x) and a loss function ℓ ,
how do we minimize the objective function

L : θ 7→ n∑
i=1 ℓ(Fθ(xi), yi) ?
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Chapter 2: Supervised Learning (1) - Regression
Summary

In Short:

1. A regression model is a model that aims at predicting a variable y that is continuous (typically, a real number)
given an observation x.

2. The simplest regression model is the linear regression: Fθ(x) = A · x + b, where θ = (A, b) represent the
parameters of the model. We say that this is a parametric model.

3. We try to optimize θ to minimize the Mean Squared Error (MSE) on the training data.
4. A strength of linear regression: we have access to a closed form for the optimal parameter θ∗ (the one that

minimizes the MSE on the training data).
5. We can consider polynomial regressions, which are more expressive, and which actually boil down to linear

regression on augmented observations.
6. Warning! A more expressive model will always be better on the training set. What really matters are its

performances on the validation set.
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Chapter 3: An optimization detour
Training a machine learning model Fθ boils down to optimizing its parameters in order to minimize an
objective function θ 7→ L(θ). In this chapter, we will discuss the main algorithms (and its variations)
used in ML: the gradient descent.
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Chapter 3: An optimization detour

Definition:

Let L : Rd → R. We say that L admits a gradient at θ ∈ Rd if there exists a vector ∇L(θ) ∈ Rd (the gradient)
such that

L(θ + dθ) = L(θ) + ⟨∇L(θ), dθ⟩+ o(dθ),
for all variation dθ ∈ Rd. If ∇L(θ) = 0, we say that θ is a critical point of L.

1. The gradient descent algorithm

→ It describes the first-order variation of L: when we move from
θ in any direction dθ, locally, the variation of L is ⟨∇L(θ), dθ⟩.
In particular, if we go in the direction dθ =∇L(θ), we maximize
(locally) the variation of L. We say that the gradient is the
steepest ascent direction. Conversely, −∇L(θ) is the steepest
descent direction.
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Chapter 3: An optimization detour

Definition:

Let L : Rd → R. We say that L admits a gradient at θ ∈ Rd if there exists a vector ∇L(θ) ∈ Rd (the gradient)
such that

L(θ + dθ) = L(θ) + ⟨∇L(θ), dθ⟩+ o(dθ),
for all variation dθ ∈ Rd. If ∇L(θ) = 0, we say that θ is a critical point of L.

1. The gradient descent algorithm

→ It describes the first-order variation of L: when we move from
θ in any direction dθ, locally, the variation of L is ⟨∇L(θ), dθ⟩.
In particular, if we go in the direction dθ =∇L(θ), we maximize
(locally) the variation of L. We say that the gradient is the
steepest ascent direction. Conversely, −∇L(θ) is the steepest
descent direction.

Proposition:

Assume that L : Rd → R is smooth (i.e. ad-
mits gradient everywhere), and that ∇L(θ) ̸= 0
at some θ ∈ Rd.
Then, for λ small enough, L(θ− λ∇L(θ)) < L(θ).
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Chapter 3: An optimization detour

Definition:

Let L : Rd → R. We say that L admits a gradient at θ ∈ Rd if there exists a vector ∇L(θ) ∈ Rd (the gradient)
such that

L(θ + dθ) = L(θ) + ⟨∇L(θ), dθ⟩+ o(dθ),
for all variation dθ ∈ Rd. If ∇L(θ) = 0, we say that θ is a critical point of L.

1. The gradient descent algorithm

• This also holds for (local) maxima. Points θ which are neither local maximum nor minimum are called saddle points.
• To characterize minimizers, we can use the criterion ∇2L(θ) ⪰ 0 (SDP, i.e. eigenvalues ⩾ 0).

→ It describes the first-order variation of L: when we move from
θ in any direction dθ, locally, the variation of L is ⟨∇L(θ), dθ⟩.
In particular, if we go in the direction dθ =∇L(θ), we maximize
(locally) the variation of L. We say that the gradient is the
steepest ascent direction. Conversely, −∇L(θ) is the steepest
descent direction.

Proposition:

If θ is a (local) minimum of L, that is there exists
an open neighborhood U of θ such that L(θ) ⩽
L(θ′) for any θ′ ∈ U, then ∇L(θ) = 0.
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Chapter 3: An optimization detour
1. The gradient descent algorithm

Definition:

Given L smooth, λ > 0, an initial θ0, define the sequence

θt+1 = θt − λ∇L(θt).
This sequence is called a gradient descent (GD) for L with initialization θ0 with learning rate (or step-size) λ.

Algorithm:

The simplest GD algorithm applied to L : Rd → R (smooth) consists thus of:
• Choose λ > 0, θ0 ∈ Rd,
• Fix a number of iterations T ,
• Build the sequence θ1, . . . , θT .
• Return θT .

Intuition: Hopefully, (i) we produce a converging sequence (θt)t (as T →∞), (ii) the sequence (L(θt))t is decreasing, (iii) it converges toward a
minimum of L.
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Chapter 3: An optimization detour
1. The gradient descent algorithm

Definition:

Given L smooth, λ > 0, an initial θ0, define the sequence

θt+1 = θt − λ∇L(θt).
This sequence is called a gradient descent (GD) for L with initialization θ0 with learning rate (or step-size) λ.

Algorithm:

The simplest GD algorithm applied to L : Rd → R (smooth) consists thus of:
• Choose λ > 0, θ0 ∈ Rd,
• Fix a number of iterations T ,
• Build the sequence θ1, . . . , θT .
• Return θT .

Intuition: Hopefully, (i) we produce a converging sequence (θt)t (as T →∞), (ii) the sequence (L(θt))t is decreasing, (iii) it converges toward a
minimum of L.
Note: Many variations, including step-dependent parameters λt (typically λt → 0), stopping criterion, etc.
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Chapter 3: An optimization detour
1. The gradient descent algorithm
We pick in the following L : R2 → R, (x, y) 7→ x4 + y4 − 2x2 − 4y2 + x (but it does not matter much).
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Chapter 3: An optimization detour
1. The gradient descent algorithm
Interpretation: The iteration θt+1 = θt − λ∇L(θt) can be understood as an explicit Euler discretization of the ordinary
differential equation dθdt = −∇L(θ(t))
with step size λ. The solution t 7→ θ(t) of this ODE is called a gradient flow. In some sense, it can be proved under mild
assumptions that the sequence (θt)t converges toward the curve t 7→ θ(t) when λ→ 0 and T →∞ (note that we
overloaded notation here).
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Chapter 3: An optimization detour
1. The gradient descent algorithm
Interpretation: The iteration θt+1 = θt − λ∇L(θt) can be understood as an explicit Euler discretization of the ordinary
differential equation dθdt = −∇L(θ(t))
with step size λ. The solution t 7→ θ(t) of this ODE is called a gradient flow. In some sense, it can be proved under mild
assumptions that the sequence (θt)t converges toward the curve t 7→ θ(t) when λ→ 0 and T →∞ (note that we
overloaded notation here).

• Some limitations of the Gradient Descent:
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Chapter 3: An optimization detour
1. The gradient descent algorithm
Interpretation: The iteration θt+1 = θt − λ∇L(θt) can be understood as an explicit Euler discretization of the ordinary
differential equation dθdt = −∇L(θ(t))
with step size λ. The solution t 7→ θ(t) of this ODE is called a gradient flow. In some sense, it can be proved under mild
assumptions that the sequence (θt)t converges toward the curve t 7→ θ(t) when λ→ 0 and T →∞ (note that we
overloaded notation here).

• Some limitations of the Gradient Descent:

→ Dependence on the initialization
(not too bad, but keep it in mind if
you pick random θ0)
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Chapter 3: An optimization detour
1. The gradient descent algorithm
Interpretation: The iteration θt+1 = θt − λ∇L(θt) can be understood as an explicit Euler discretization of the ordinary
differential equation dθdt = −∇L(θ(t))
with step size λ. The solution t 7→ θ(t) of this ODE is called a gradient flow. In some sense, it can be proved under mild
assumptions that the sequence (θt)t converges toward the curve t 7→ θ(t) when λ→ 0 and T →∞ (note that we
overloaded notation here).

• Some limitations of the Gradient Descent:

→ if λ is too large, may not
converge.

→ Dependence on the initialization
(not too bad, but keep it in mind if
you pick random θ0)
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Chapter 3: An optimization detour
1. The gradient descent algorithm
Interpretation: The iteration θt+1 = θt − λ∇L(θt) can be understood as an explicit Euler discretization of the ordinary
differential equation dθdt = −∇L(θ(t))
with step size λ. The solution t 7→ θ(t) of this ODE is called a gradient flow. In some sense, it can be proved under mild
assumptions that the sequence (θt)t converges toward the curve t 7→ θ(t) when λ→ 0 and T →∞ (note that we
overloaded notation here).

• Some limitations of the Gradient Descent:

→ if λ is too small, takes a long
time to converge.

→ if λ is too large, may not
converge.

→ Dependence on the initialization
(not too bad, but keep it in mind if
you pick random θ0)
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Chapter 3: An optimization detour
2. Convex functions.
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Chapter 3: An optimization detour
2. Convex functions.

Definition:

A function f : Rd → R ∪ {+∞} is said to be convex if for any x, y ∈ Rd and any t ∈ [0, 1],
f ((1− t)x + ty) ⩽ (1− t)f (x) + tf (y). (6)

We define the domain of f as D(f ) = {x, f (x) < +∞}, which is assumed to be a convex subset of Rd.

(1− t)x + ty

f (x)
f (y)(1− t)f (x) + tf (y)

f ((1− t)x + ty)
x y

In Short:

The curve is always below chord joining any x, y.

+∞
(Surprisingly?) this function is convex

Rd

R
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Chapter 3: An optimization detour
2. Convex functions.

Proposition:

• If f is convex, then it is continuous (on the interior of its domain). It may not be differentiable, but it is differentiable Lebesgue-a.e.
If we assume that it is differentiable, its gradient has to be monotone, that is:
• for all x, y ∈ D(f ),

⟨∇f (x)−∇f (y), x − y⟩ ⩾ 0. (7)

Furthermore,
f (x) ⩾ f (y) + ⟨∇f (y), x − y⟩ . (8)

• Therefore, if ∇f (x) = 0, then x is a (global) minimizer of f (in particular, no local minimizer).
If f has a second derivative, we have
• the Hessian matrix∇2f (x) = ( ∂2f

∂2xixj (x)) shall be positive semi-definite for every x ∈ D(f ), that is ∀x ∈ D(f ), ∀u ∈ Rd, uT∇2f (x)u ⩾ 0,

denoted by ∇2f (x) ⪰ 0 which is equivalent to say that the eigenvalues of ∇2f (x) are non-negative.

y ∇f (y)x

f (x)
f (y) f (y) + ⟨∇f (y), x − y⟩

In Short:

Eq. (8): “the curve is above any tangent plane”.

z
x

y

∇(f )(z)

∇(f )(y)

∇(f )(x)

Illu of Eq. (7). Note:
∇f (x) ⊥ {f (x ′) = f (x)}
(levelset).



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 3 — (p. 16/38)

Chapter 3: An optimization detour
2. Convex functions.
Intuition: The gradient descent algorithm should work (very) well on convex functions... under suitable assumptions!
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Chapter 3: An optimization detour
2. Convex functions.
Intuition: The gradient descent algorithm should work (very) well on convex functions... under suitable assumptions!

• f should be “sufficiently curved”...
• ... but not too much.

Not sufficiently curved ⇒ super slow convergence
toward the global minimizer of f .

Albeit being convex and C1, the function is very curvy around its
minimizer x∗ = 0 ⇒ the GD bounces ⇒ super slow convergence
(if any).
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Chapter 3: An optimization detour
2. Convex functions.

Definition:

If f is convex, and α > 0, we say that f is α-strongly convex if for all x, y ∈ D(f ), t ∈ [0, 1],
f (tx + (1− t)y) ⩽ tf (x) + (1− t)f (y)− α2 t(1− t)||x − y||2.

Proposition:

If f is convex and twice differentiable, it is α-strongly
convex iff one of the following hold:
• for all x, y ∈ D(f ),

f (y) ⩾ f (x) + ⟨∇f (x), y− x⟩+ α2 ||x − y||2,
• The function x 7→ f (x)− α2 ||x||2 is convex,
• We have ∇2f (x) ⪰ αI for every x ∈ D(f ).

In Short:

Everywhere, f is above its tangent + a parabola of curvature α
(second derivative) ⇒ its curvature is larger than α everywhere.
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Chapter 3: An optimization detour
2. Convex functions.

Definition:

If f is convex, and α > 0, we say that f is α-strongly convex if for all x, y ∈ D(f ), t ∈ [0, 1],
f (tx + (1− t)y) ⩽ tf (x) + (1− t)f (y)− α2 t(1− t)||x − y||2.

Proposition:

If f is convex and twice differentiable, it is α-strongly
convex iff one of the following hold:
• for all x, y ∈ D(f ),

f (y) ⩾ f (x) + ⟨∇f (x), y− x⟩+ α2 ||x − y||2,
• The function x 7→ f (x)− α2 ||x||2 is convex,
• We have ∇2f (x) ⪰ αI for every x ∈ D(f ).

In Short:

Everywhere, f is above its tangent + a parabola of curvature α
(second derivative) ⇒ its curvature is larger than α everywhere.

Proposition:

If f is α-scvx, it has a unique minimizer x∗.

Exercise: Prove this.
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Chapter 3: An optimization detour
2. Convex functions.

Definition:

If f is convex, and α > 0, we say that f is α-strongly convex if for all x, y ∈ D(f ), t ∈ [0, 1],
f (tx + (1− t)y) ⩽ tf (x) + (1− t)f (y)− α2 t(1− t)||x − y||2.

Proposition:

If f is α-strongly convex, it satisfies the so-called Polyak-Lojasiewicz condition (PL), that is for all x ∈ D(f ),
0 ⩽ f (x)− f (x∗) ⩽ 12α ||∇f (x)||2.

In Short:

Gradients get large when far from the global minimizer, and conversely, ||∇f (xt)|| → 0⇒ f (xt)→ f (x∗).
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Chapter 3: An optimization detour
2. Convex functions.

Definition:

We say that f is β-smooth if it is differentiable and is gradient is β-Lipschitz:

∀x, y ∈ D(f ), ||∇f (x)−∇f (y)|| ⩽ β||x − y||.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 3 — (p. 22/38)

Chapter 3: An optimization detour
2. Convex functions.

Definition:

We say that f is β-smooth if it is differentiable and is gradient is β-Lipschitz:

∀x, y ∈ D(f ), ||∇f (x)−∇f (y)|| ⩽ β||x − y||.

In Short:

The graph of f is upper-bounded by its tangent + a parabola of curvature β.

Proposition:

If f is convex and twice differentiable, it is β-smooth iff
• for all x, y ∈ D(f ),

f (y) ⩽ f (x) + ⟨∇f (x), y− x⟩+ β2 ||y− x||2.
• ∇2f (x) ⪯ βI for all x ∈ D(f ).

x
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Chapter 3: An optimization detour
2. Convex functions.

Definition:

We say that f is β-smooth if it is differentiable and is gradient is β-Lipschitz:

∀x, y ∈ D(f ), ||∇f (x)−∇f (y)|| ⩽ β||x − y||.

Question: What happen if we try to minimize this upper-bound (the right-hand-side term) in terms of y?

Proposition:

If f is convex and twice differentiable, it is β-smooth iff
• for all x, y ∈ D(f ),

f (y) ⩽ f (x) + ⟨∇f (x), y− x⟩+ β2 ||y− x||2.
• ∇2f (x) ⪯ βI for all x ∈ D(f ).

x
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Chapter 3: An optimization detour
2. Convex functions.

The nicest convex functions are those being α-strongly convex and β-smooth.

Exercise: Consider f : R2 → R defined by f (x1, x2) 7→ α2 x21 + β2 x22 , with β > α. Prove that it is
α-strongly convex and β-smooth.

Exercice: Give a simple example of convex function that is
not β-smooth. Not α-strongly convex.
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Chapter 3: An optimization detour
3. Gradient Descent for convex functions
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Chapter 3: An optimization detour
3. Gradient Descent for convex functions

Proposition:

Let f be α-cvx and β-smooth. Let x∗ be its single minimizer. Pick λt = λ ⩽ 1
β (constant). Then the GD for f with

initialization x0 and step-size λ satisfies, for all T ∈ N,

f (xT )− f (x∗) ⩽ (1− αλ)T (f (x0)− f (x∗)) ⩽ e−αλT (f (x0)− f (x∗)). (9)

If f is only convex (not strongly), we get the slower rate (with λ = 1
β ), assuming that f has a global minimizer x∗,

f (xT )− f (x∗) ⩽ β||x0 − x∗||22T .
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Chapter 3: An optimization detour
3. Gradient Descent for convex functions

Proposition:

Let f be α-cvx and β-smooth. Let x∗ be its single minimizer. Pick λt = λ ⩽ 1
β (constant). Then the GD for f with

initialization x0 and step-size λ satisfies, for all T ∈ N,

f (xT )− f (x∗) ⩽ (1− αλ)T (f (x0)− f (x∗)) ⩽ e−αλT (f (x0)− f (x∗)). (9)

If f is only convex (not strongly), we get the slower rate (with λ = 1
β ), assuming that f has a global minimizer x∗,

f (xT )− f (x∗) ⩽ β||x0 − x∗||22T .

Remark: If we pick λ = 1
β in (9), the convergence rate is exactly α/β. The ratio κ = β/α ⩾ 1 is called the condition

number of f , it is an upperbound between the largest eigenvalue of ∇2f (x) (at any x) and the lowest one. In particular,
to get xT such that f (xT ) ⩽ f (x∗) + ε, we should take T = log(ε−1)κ.
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Chapter 3: An optimization detour
3. Gradient Descent for convex functions

Proposition:

Let f be α-cvx and β-smooth. Let x∗ be its single minimizer. Pick λt = λ ⩽ 1
β (constant). Then the GD for f with

initialization x0 and step-size λ satisfies, for all T ∈ N,

f (xT )− f (x∗) ⩽ (1− αλ)T (f (x0)− f (x∗)) ⩽ e−αλT (f (x0)− f (x∗)). (9)

If f is only convex (not strongly), we get the slower rate (with λ = 1
β ), assuming that f has a global minimizer x∗,

f (xT )− f (x∗) ⩽ β||x0 − x∗||22T .

Remark: If we pick λ = 1
β in (9), the convergence rate is exactly α/β. The ratio κ = β/α ⩾ 1 is called the condition

number of f , it is an upperbound between the largest eigenvalue of ∇2f (x) (at any x) and the lowest one. In particular,
to get xT such that f (xT ) ⩽ f (x∗) + ε, we should take T = log(ε−1)κ.
Remark: In most applications, we do not know α, β, so the take home message is “you want to pick λ as large as possible,
but if it’s too large (> β−1), convergence may fail”.
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.
Intuition: Training a parametric model F (θ, ·) on a dataset (xi, yi)ni=1 boils down to minimize a function of the form

L(θ) = 1
n

n∑
i=1 ℓ(F (θ, xi), yi)︸ ︷︷ ︸

fi(θ)
.

It’s gradient is given by

∇L(θ) = 1
n

n∑
i=1 ∇fi(θ).

Question: Do we really need to take into account all the observations (xi, yi)ni=1 at each gradient step, especially when
n is large? (Computational efficiency.)
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.
Intuition: Training a parametric model F (θ, ·) on a dataset (xi, yi)ni=1 boils down to minimize a function of the form

L(θ) = 1
n

n∑
i=1 ℓ(F (θ, xi), yi)︸ ︷︷ ︸

fi(θ)
.

It’s gradient is given by

∇L(θ) = 1
n

n∑
i=1 ∇fi(θ).

Question: Do we really need to take into account all the observations (xi, yi)ni=1 at each gradient step, especially when
n is large? (Computational efficiency.)

Key idea: Take j ∼ Unif({1, . . . , n}), and observe that

E[∇fj (θ)] = 1
n︸︷︷︸

P(i=j)
n∑
i=1 ∇fi(θ) =∇L(θ).
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.

Key idea: Take j ∼ Unif({1, . . . , n}), and observe that

E[∇fj (θ)] = 1
n︸︷︷︸

P(i=j)
n∑
i=1 ∇fi(θ) =∇L(θ).

Algorithm:

Input: Observations–labels (xi, yi), i = 1, . . . , n. Class of model {F (θ, ·), θ ∈ Θ}. Loss ℓ . Initial θ0 ∈ Rd. Number
of step T ∈ N.
For t = 1, . . . , T ,
• Pick j ∼ Unif({1, . . . , n}),
• Compute fj (θt) := ℓ(F (θt , xj ), yj ).
• Update θt+1 = θt − λ∇fj (θt).

Return θT .
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.

Algorithm:

Input: Observations–labels (xi, yi), i = 1, . . . , n. Class of model {F (θ, ·), θ ∈ Θ}. Loss ℓ . Initial θ0 ∈ Rd. Number
of step T ∈ N.
For t = 1, . . . , T ,
• Pick j ∼ Unif({1, . . . , n}),
• Compute fj (θt) := ℓ(F (θt , xj ), yj ).
• Update θt+1 = θt − λ∇fj (θt).

Return θT .

→ This is exactly the same as a standard GD, but where we replace ∇L(θ) by the (random) ∇fj (θ).
Remark: In practice, it is common to (i) randomly shuffle the dataset, (ii) split it into batches (usually of size 16 or 32),
(iii) go through batches in order, compute the average gradient on the batch and update, (iv) repeat.

For hardware reasons
Once we’ve parse the whole dataset one time by
iterating on the n/32 batches, we say that we ran one
epoch. In many libraries (e.g. tensorflow), we set the
number of epoch, not of iterations! The number of batches (n/32)



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 3 — (p. 34/38)

Chapter 3: An optimization detour
4. Stochastic Gradient Descent.

Algorithm:

Input: Observations–labels (xi, yi), i = 1, . . . , n. Class of model {F (θ, ·), θ ∈ Θ}. Loss ℓ . Initial θ0 ∈ Rd. Number
of step T ∈ N.
For t = 1, . . . , T ,
• Pick j ∼ Unif({1, . . . , n}),
• Compute fj (θt) := ℓ(F (θt , xj ), yj ).
• Update θt+1 = θt − λ∇fj (θt).

Return θT .

Question: Why is doing an SGD a good idea?
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.
Unbiased estimate: Recall: our goal is not exactly to minimize the empirical risk/train error L(θ) = 1

n
∑n

i=1 fi(θ) (⇒
overfitting) but actually to minimize L(θ) = E[fx,y∼Γ(θ)] (theoretical risk), where we assume that (x, y) ∼ Γ.
Now, ∇f(x,y)(θ) is an unbiased estimate of ∇L(θ). It however has some variance (say, in dimension 1):

Var[∇fi(θ)] = E[|∇fi(θ)|2]− E[∇fi(θ)]2︸ ︷︷ ︸=|∇L(θ)|2
.

In particular, at the optimum θ∗ of L, E[∇fi(θ∗)] =∇L(θ∗) = 0, but the variance is

E[|∇fi(θ∗)|2] > 0,
unless we have perfect interpolation (i.e. fi(θ∗) = 0 that is F (θ∗, xi) = yi for all i, which is unlikely).
→ around θ∗, the norm of the gradient won’t go to 0, and thus the SGD won’t converge.
In constrat, observe that

E[⟨∇L(θ),∇fi(θ)⟩] = ||∇L(θ)||2,
so “far from the optimum” (when ||∇L(θ)||2 is large), the scalar product is likely to be ⩾ 0 (assuming some
regularity/concentration) → likely to draw a descent direction.
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.

Proposition:

Assume that L is α-strongly convex, and E[fi(θ)2] ⩽ β2 for some β. Consider the SGD algorithm with fixed step
size λ ⩽ 1

α , with θt the t-th step. We have

E[||θT − θ∗||22] ⩽ (1− αλ)T ||θ0 − θ∗||22 + λ
α β

2. (10)
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.

Proposition:

Assume that L is α-strongly convex, and E[fi(θ)2] ⩽ β2 for some β. Consider the SGD algorithm with fixed step
size λ ⩽ 1

α , with θt the t-th step. We have

E[||θT − θ∗||22] ⩽ (1− αλ)T ||θ0 − θ∗||22 + λ
α β

2. (10)

Interpretation: The first term will go faster to 0 if λ→ α−1. On the other hand, the second term (that does not go to 0)
invites us to take λ→ 0 (but in that regime, the first term may fail to converge).
Conclusion: take decreasing steps. How much ?
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Chapter 3: An optimization detour
4. Stochastic Gradient Descent.

Proposition:

Assume that L is α-strongly convex, and E[fi(θ)2] ⩽ β2 for some β. Consider the SGD algorithm with fixed step
size λ ⩽ 1

α , with θt the t-th step. We have

E[||θT − θ∗||22] ⩽ (1− αλ)T ||θ0 − θ∗||22 + λ
α β

2. (10)

Proposition:

Same assumption, but now λt is such that
∑

t λt = +∞, but
∑

t λt2 <∞. Then,

E[||θT − θ∗||22] ⩽ 1
α
∑T

t=1 λt
(
||θ0 − θ∗||22 + ∑

t λt2
α β2) . (11)
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Chapter 4: Supervised learning (2)–Classification
This chapter is dedicated to classification tasks. Recall that it means that the labels (yi)i take values in a finite set,
called classes.
Example: The observations (xi)i are images (pictures), the labels (yi)i describe what is represented on the picture
("car", "cat", etc.).
A general way of thinking is the following: we try to separate points of different colors.
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Chapter 4: Supervised learning (2)–Classification
This chapter is dedicated to classification tasks. Recall that it means that the labels (yi)i take values in a finite set,
called classes.
Example: The observations (xi)i are images (pictures), the labels (yi)i describe what is represented on the picture
("car", "cat", etc.).
A general way of thinking is the following: we try to separate points of different colors.

Remark: As for regression tasks,
what matters is the
performances of the model on
new observations.

What should we predict there?
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Chapter 4: Supervised learning (2)–Classification
This chapter is dedicated to classification tasks. Recall that it means that the labels (yi)i take values in a finite set,
called classes.
Example: The observations (xi)i are images (pictures), the labels (yi)i describe what is represented on the picture
("car", "cat", etc.).
A general way of thinking is the following: we try to separate points of different colors.

Remark: As for regression tasks,
what matters is the
performances of the model on
new observations.

What should we predict there?

Question: How do we measure
the performances of a
classification model?
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Chapter 4: Supervised learning (2)–Classification
1. Accuracy
Consider observations (xi)i ∈ Rd and labels (yi)i ∈ {1, . . . , K}, where K is the number of classes.
The goal of a model F : Rd → {1, . . . , K} is to satisfy, as often as possible, F (x) = y for each pair of observation-label(x, y).
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Chapter 4: Supervised learning (2)–Classification
1. Accuracy
Consider observations (xi)i ∈ Rd and labels (yi)i ∈ {1, . . . , K}, where K is the number of classes.
The goal of a model F : Rd → {1, . . . , K} is to satisfy, as often as possible, F (x) = y for each pair of observation-label(x, y).

Definition:

The accuracy of a model F on a training set (x1, y1), . . . , (xn, yn) is given by

acc(F ) = 1
n

n∑
i=1 1F (xi)=yi , (12)

where 1F (xi)=yi equals 1 if F (xi) = yi and 0 otherwise.
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Chapter 4: Supervised learning (2)–Classification
1. Accuracy
Consider observations (xi)i ∈ Rd and labels (yi)i ∈ {1, . . . , K}, where K is the number of classes.
The goal of a model F : Rd → {1, . . . , K} is to satisfy, as often as possible, F (x) = y for each pair of observation-label(x, y).

Definition:

The accuracy of a model F on a training set (x1, y1), . . . , (xn, yn) is given by

acc(F ) = 1
n

n∑
i=1 1F (xi)=yi , (12)

where 1F (xi)=yi equals 1 if F (xi) = yi and 0 otherwise.

Remark: acc(F ) ∈ [0, 1], often expressed as a percentage. It can be interpreted as a probability that the predictions
made by our model are correct.

In Short:

We are simply counting the average proportion of “good answers” given by our model.
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Chapter 4: Supervised learning (2)–Classification
1. Accuracy
Consider observations (xi)i ∈ Rd and labels (yi)i ∈ {1, . . . , K}, where K is the number of classes.
The goal of a model F : Rd → {1, . . . , K} is to satisfy, as often as possible, F (x) = y for each pair of observation-label(x, y).

Definition:

The accuracy of a model F on a training set (x1, y1), . . . , (xn, yn) is given by

acc(F ) = 1
n

n∑
i=1 1F (xi)=yi , (12)

where 1F (xi)=yi equals 1 if F (xi) = yi and 0 otherwise.

Remark: In some contexts, some errors are “worse” than others (e.g. medical prediction, autonomous car). We can
account for these by slightly modifying the definition of the accuracy.
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Chapter 4: Supervised learning (2)–Classification
1. Accuracy
Consider observations (xi)i ∈ Rd and labels (yi)i ∈ {1, . . . , K}, where K is the number of classes.
The goal of a model F : Rd → {1, . . . , K} is to satisfy, as often as possible, F (x) = y for each pair of observation-label(x, y).

Definition:

The accuracy of a model F on a training set (x1, y1), . . . , (xn, yn) is given by

acc(F ) = 1
n

n∑
i=1 1F (xi)=yi , (12)

where 1F (xi)=yi equals 1 if F (xi) = yi and 0 otherwise.

Remark: In some contexts, some errors are “worse” than others (e.g. medical prediction, autonomous car). We can
account for these by slightly modifying the definition of the accuracy.

Remark: A classification model is usually called a classifier.
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

We see that the behavior of our model Fθ changes when Aθ(x) = 0.
The set of x solving this equation defines the decision boundary of our
model (the region where the model “hesitates” between 0 and 1).
Observation: The equation Aθ(x) = 0 defines an hyperplane of Rd.
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

We see that the behavior of our model Fθ changes when Aθ(x) = 0.
The set of x solving this equation defines the decision boundary of our
model (the region where the model “hesitates” between 0 and 1).
Observation: The equation Aθ(x) = 0 defines an hyperplane of Rd.

Decision boundary obtained for a given θ.
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

We see that the behavior of our model Fθ changes when Aθ(x) = 0.
The set of x solving this equation defines the decision boundary of our
model (the region where the model “hesitates” between 0 and 1).
Observation: The equation Aθ(x) = 0 defines an hyperplane of Rd.

Decision boundary obtained for a given θ.

Area where the
model predicts
red

The
model
predicts
blue here
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

We see that the behavior of our model Fθ changes when Aθ(x) = 0.
The set of x solving this equation defines the decision boundary of our
model (the region where the model “hesitates” between 0 and 1).
Observation: The equation Aθ(x) = 0 defines an hyperplane of Rd.

Decision boundary for another value of θ.

Area where
the model
predicts red

The
model
predicts
blue here



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 4 — (p. 14/40)

Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

We see that the behavior of our model Fθ changes when Aθ(x) = 0.
The set of x solving this equation defines the decision boundary of our
model (the region where the model “hesitates” between 0 and 1).
Observation: The equation Aθ(x) = 0 defines an hyperplane of Rd.

Area where
the model
predicts red.

The
model
predicts
blue here

Decision boundary for a good choice of θ
(accuracy ≃ 100%).
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

We see that the behavior of our model Fθ changes when Aθ(x) = 0.
The set of x solving this equation defines the decision boundary of our
model (the region where the model “hesitates” between 0 and 1).
Observation: The equation Aθ(x) = 0 defines an hyperplane of Rd.

Remark: in dimension 2, hyperplanes are straight lines. In dimension
3, they become 2D-planes. In higher dimension, we obtain a flat
hypersurface that split the space in two areas.

Area where
the model
predicts red

The
model
predicts
blue here
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Chapter 4: Supervised learning (2)–Classification
2. An example: the linear classifier
Just as for regression tasks, we will often consider parametric models, that is of the form Fθ for some parameter θ.

Example: Observations x ∈ Rd, and labels in two classes : y ∈ {0, 1}. One can consider a simple adaptation of the
linear regression: for θ ∈ Rd+1, let

Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d]
then

Fθ(x) = {1 if Aθ(x) ⩾ 00 if Aθ(x) < 0 .

Training: As for the regression problem, the goal is to optimize the parameter θ so that the
model gets the best possible score (on the training set and on the test set). But...
1. We do not have access to a close form for the optimal θ∗.
2. We may consider using a gradient descent, but the map θ 7→ acc(Fθ) is locally constant,

thus its gradient (whenever defined) is 0, and GD won’t work.

acc(Fθ)

θ

No way to locally increase or
reduce the objective value acc(Fθ)
⇒ ∇θacc(Fθ) = 0.
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss
In order to optimize the parameter θ of a classifier Fθ : Rd → Y = {1, . . . K} where K represents the number of classes,
one must modify the objective function. The one we present below, called the cross-entropy loss (or log-loss, logistic
loss...), is widely used in practice (see later for the interpretation).
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss
In order to optimize the parameter θ of a classifier Fθ : Rd → Y = {1, . . . K} where K represents the number of classes,
one must modify the objective function. The one we present below, called the cross-entropy loss (or log-loss, logistic
loss...), is widely used in practice (see later for the interpretation).

Key idea: We will simply retrieve a regression task. We build a loss L such that minimizing L ≃ maximizing acc(Fθ).
For this, we first transform the labels: if y = c, with c ∈ {1, . . . , K}, we build y′ = (0, . . . , 0, 1, 0, . . . , 0) ∈ RK .

position c

size KThis re-definition of the labels is called one-hot-encoding.
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss
In order to optimize the parameter θ of a classifier Fθ : Rd → Y = {1, . . . K} where K represents the number of classes,
one must modify the objective function. The one we present below, called the cross-entropy loss (or log-loss, logistic
loss...), is widely used in practice (see later for the interpretation).

Key idea: We will simply retrieve a regression task. We build a loss L such that minimizing L ≃ maximizing acc(Fθ).
For this, we first transform the labels: if y = c, with c ∈ {1, . . . , K}, we build y′ = (0, . . . , 0, 1, 0, . . . , 0) ∈ RK .

position c

size KThis re-definition of the labels is called one-hot-encoding.

Example: If we have three classes cat, dog and pizza, we represent the label cat by(1, 0, 0), dog by (0, 1, 0), and pizza by (0, 0, 1).
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss
In order to optimize the parameter θ of a classifier Fθ : Rd → Y = {1, . . . K} where K represents the number of classes,
one must modify the objective function. The one we present below, called the cross-entropy loss (or log-loss, logistic
loss...), is widely used in practice (see later for the interpretation).

Key idea: We will simply retrieve a regression task. We build a loss L such that minimizing L ≃ maximizing acc(Fθ).
For this, we first transform the labels: if y = c, with c ∈ {1, . . . , K}, we build y′ = (0, . . . , 0, 1, 0, . . . , 0) ∈ RK .

position c

size KThis re-definition of the labels is called one-hot-encoding.

Example: If we have three classes cat, dog and pizza, we represent the label cat by(1, 0, 0), dog by (0, 1, 0), and pizza by (0, 0, 1).
Intuition: We switch from a model that should make prediction in a finite set {1, . . . , K} to a model whose outputs
belong to RK . This is now a regression task. For instance, we want that

Fθ ( ) ≃ (1, 0, 0)



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 4 — (p. 21/40)

Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss

Intuition: We switch from a model that should make prediction in a finite set {1, . . . , K} to a model whose outputs
belong to RK . This is now a regression task. For instance, we want that

Fθ ( ) ≃ (1, 0, 0)

Probabilist viewpoint: The representation y = (1, 0, 0) can be interpreted as "This object is 100% a cat". Therefore, if
we can force our model to produce prediction on the probability simplex ΣK = {(p1, . . . , pK ) ∈ [0, 1]K , ∑K

i=1 pi = 1}, we
can interpret a given prediction (p1, . . . , pK ) = Fθ(x) as a “probability” (or “likelyhood”) that x belong to each of the
classes.
For instance, if Fθ

( ) = (0.98, 0.01, 0.01), it suggests that the model is 98% conviced that the input is a cat. If it is(0.51, 0.49, 0), the model is closely hesitating between cat and dog.
To produce outputs in the probability simplex, we will use the softmax function.
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss

Definition:

The softmax is defined as : smax : RK → ΣK
(f1, . . . , fK ) 7→ (

ef1∑K
j=1 efj , . . . ,

efK∑K
j=1 efj

)
.

(13)

Probabilist viewpoint: The representation y = (1, 0, 0) can be interpreted as "This object is 100% a cat". Therefore, if
we can force our model to produce prediction on the probability simplex ΣK = {(p1, . . . , pK ) ∈ [0, 1]K , ∑K

i=1 pi = 1}, we
can interpret a given prediction (p1, . . . , pK ) = Fθ(x) as a “probability” (or “likelyhood”) that x belong to each of the
classes.
For instance, if Fθ

( ) = (0.98, 0.01, 0.01), it suggests that the model is 98% conviced that the input is a cat. If it is(0.51, 0.49, 0), the model is closely hesitating between cat and dog.
To produce outputs in the probability simplex, we will use the softmax function.
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss
Last step: Applying the softmax to the predictions Fθ(x) provides elements in ΣK , which should be compared to the
actual (one-hot-encoded) labels of the form (0, . . . , 0, 1, 0, . . . , 0).
One may consider using the MSE, but as explained later, it is much better to use the cross-entropy loss.

Definition:

Formally, the cross-entropy loss is defined as:

L(θ) = − 1
N

N∑
i=1 yi · log[smax(Fθ(xi))] (14)

where
• θ represents the parameters of the model,
• The log is applied term-wise.

The predictions of the model (before applying the softmax) are called logits.
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss
• Understanding the CE loss as a Maximum Likelihood Estimation. Consider the classification problem with K classes
with data (x, y). Our goal is to estimate the probability distribution {P(y = c|x), c = 1, . . . , K} ∈ ΣK ⊂ RK . For
clarity, let y denote the one-hot-encoding of y.
Now, we seek for a model F such that P(y = c|x) = smax(F (x))[c]. This can be compactly summarized as:

P(y|x) = y · smax(F (x)).
Now, the likelihood of observing an i.i.d. sample (xi, yi)i is given by

P((xi, yi)Ni=1) = N∏
i=1 P(xi, yi) = N∏

i=1 P(yi|xi)P(xi).
Maximizing the likelihood boils down to find F that minimizes the quantity

−
N∑
i=1 yi · log[smax(F (xi))].

Note that we used that log(yi · smax(F (xi))) = yi · log[smax(F (xi))] (termwise log).

Indep. of F .
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Chapter 4: Supervised learning (2)–Classification
3. Training a classification model: the cross-entropy loss

In Short:

To train a classifier:
1. Change the representation of the labels: y = k becomes y = (0, . . . , 0, 1︸︷︷︸

position c

, 0, . . . , 0) : this is the one-hot

encoding.
2. Turn the output of your models (the logits) to probability distribution (p1, . . . , pK ), using the softmax.
3. Use as objective function the cross-entropy loss—akin to a maximum likelihood estimator—and minimize it on

the training set.
4. Assess the “practical” performance of your model by evaluating its accuracy on the training and test sets. Even

though we did not exactly optimized the accuracy (but a “smoothed” version of it), empirically having a low
cross-entropy yields a high accuracy.
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3. Training a classification model: the cross-entropy loss

In Short:

To train a classifier:
1. Change the representation of the labels: y = k becomes y = (0, . . . , 0, 1︸︷︷︸

position c

, 0, . . . , 0) : this is the one-hot

encoding.
2. Turn the output of your models (the logits) to probability distribution (p1, . . . , pK ), using the softmax.
3. Use as objective function the cross-entropy loss—akin to a maximum likelihood estimator—and minimize it on

the training set.
4. Assess the “practical” performance of your model by evaluating its accuracy on the training and test sets. Even

though we did not exactly optimized the accuracy (but a “smoothed” version of it), empirically having a low
cross-entropy yields a high accuracy.

In practice: No worries, all these steps can be performed by using the methods provided by standard libraries.
Nonetheless, for this, you need to know that they exist, their names, etc.
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression
This is probably the most famous classification model!
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression
This is probably the most famous classification model!

For the sake of simplicity, consider first a binary classification problem Y = {0, 1}, with observations x ∈ Rd. Let
w ∈ Rd+1, and let

Aw (x) = w · x, which can also be written ⟨w, x⟩ or wT x,

where x = (1, x) ∈ Rd+1 (recall, the “augmented” observation).
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression
This is probably the most famous classification model!

For the sake of simplicity, consider first a binary classification problem Y = {0, 1}, with observations x ∈ Rd. Let
w ∈ Rd+1, and let

Aw (x) = w · x, which can also be written ⟨w, x⟩ or wT x,

where x = (1, x) ∈ Rd+1 (recall, the “augmented” observation).

Definition:

We define the sigmoid (or logistic) function:

∀t ∈ R, σ (t) = 11 + e−t ∈]0, 1[. (15)

The Logistic Regression with parameter w is defined as

LogRegw (x) = σ (w · x). (16)

If LogRegw (x) ⩾ 12 , we eventually predict 1, otherwise 0.
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression

Definition:

We define the sigmoid (or logistic) function:

∀t ∈ R, σ (t) = 11 + e−t ∈]0, 1[. (15)

The Logistic Regression with parameter w is defined as

LogRegw (x) = σ (w · x). (16)

If LogRegw (x) ⩾ 12 , we eventually predict 1, otherwise 0.

It is trained by minimizing the loss

L(w) = − 1
N

∑
i:yi=1 log(σ (w · xi)) + ∑

i:yi=0 log(1− σ (w · xi))
 (17)

Exercise : Check that this is equivalent to training a linear model with the cross-entropy.
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression
It is trained by minimizing the loss

L(w) = − 1
N

∑
i:yi=1 log(σ (w · xi)) + ∑

i:yi=0 log(1− σ (w · xi))
 (17)

Optimization: There is no closed form for the optimal w∗ that would minimize this loss on a training set.
It is typically a situation where one relies on Gradient Descent (or more sophisticated methods, like second order solver,
called Newton method, etc.).
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4. Application: the logistic regression
It is trained by minimizing the loss

L(w) = − 1
N

∑
i:yi=1 log(σ (w · xi)) + ∑

i:yi=0 log(1− σ (w · xi))
 (17)

Optimization: There is no closed form for the optimal w∗ that would minimize this loss on a training set.
It is typically a situation where one relies on Gradient Descent (or more sophisticated methods, like second order solver,
called Newton method, etc.).

In practice: scikit-learn.linear_model.LogisticRegression allows you to set up a logistic regression easily.
More generally, the cross-entropy loss (and its gradient!) is provided by most of machine learning libraries:
sklearn.metrics.log_loss, tensorflow.keras.losses.BinaryCrossentropy, torch.nn.CrossEntropyLoss,
etc.
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression
The model can be adapted to more than two classes, in which case it is often called multinomial logistic regression.
Formally, our model is simply given by

Fw (x) = w · x,

for which the cross-entropy loss reads

L : w 7→ − 1
N

N∑
i=1 yi · log[smax(w · xi)].
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Chapter 4: Supervised learning (2)–Classification
4. Application: the logistic regression
The model can be adapted to more than two classes, in which case it is often called multinomial logistic regression.
Formally, our model is simply given by

Fw (x) = w · x,

for which the cross-entropy loss reads

L : w 7→ − 1
N

N∑
i=1 yi · log[smax(w · xi)].

Proposition:

This function is convex.

Exercise: Prove it.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 4 — (p. 35/40)
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5. Limits of linear models
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Chapter 4: Supervised learning (2)–Classification
5. Limits of linear models

Definition:

A (binary) classifier is said to be linear if its decision boundary is an hyperplane, that is characterized by an
equation of the form Ax + b = 0.

Example: The prediction of a logistic regression changes whenever σ (Aθ(x)) = 12 , where we recall that
Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d] and σ (t) = 11+e−t . Observe that σ (t) = 12 ⇔ t = 0, so that Aθ(x) = 0, which is an
hyperplane.
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Chapter 4: Supervised learning (2)–Classification
5. Limits of linear models

Definition:

A (binary) classifier is said to be linear if its decision boundary is an hyperplane, that is characterized by an
equation of the form Ax + b = 0.

Example: The prediction of a logistic regression changes whenever σ (Aθ(x)) = 12 , where we recall that
Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d] and σ (t) = 11+e−t . Observe that σ (t) = 12 ⇔ t = 0, so that Aθ(x) = 0, which is an
hyperplane.

Issue: Hyperplanes split the Euclidean space Rd in two halves with a flat boundary. They can only achieve good
performances on data that are (mostly) linearly separable.
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5. Limits of linear models

Definition:

A (binary) classifier is said to be linear if its decision boundary is an hyperplane, that is characterized by an
equation of the form Ax + b = 0.

Example: The prediction of a logistic regression changes whenever σ (Aθ(x)) = 12 , where we recall that
Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d] and σ (t) = 11+e−t . Observe that σ (t) = 12 ⇔ t = 0, so that Aθ(x) = 0, which is an
hyperplane.

Issue: Hyperplanes split the Euclidean space Rd in two halves with a flat boundary. They can only achieve good
performances on data that are (mostly) linearly separable.
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Chapter 4: Supervised learning (2)–Classification
5. Limits of linear models

Definition:

A (binary) classifier is said to be linear if its decision boundary is an hyperplane, that is characterized by an
equation of the form Ax + b = 0.

Example: The prediction of a logistic regression changes whenever σ (Aθ(x)) = 12 , where we recall that
Aθ(x) = θ0 + θ1x [1] + · · ·+ θdx [d] and σ (t) = 11+e−t . Observe that σ (t) = 12 ⇔ t = 0, so that Aθ(x) = 0, which is an
hyperplane.

Issue: Hyperplanes split the Euclidean space Rd in two halves with a flat boundary. They can only achieve good
performances on data that are (mostly) linearly separable.

Remark: 50.5% is a disastrous accuracy for a binary classifier (between two balanced classes, that is with the
same number of observations in each class). This is (almost) the score that would reach a trivial classifier
predicting always 1 (or always 0).
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5. Limits of linear models

Issue: Hyperplanes split the Euclidean space Rd in two halves with a flat boundary. They can only achieve good
performances on data that are (mostly) linearly separable.

Remark: 50.5% is a disastrous accuracy for a binary classifier (between two balanced classes, that is with the
same number of observations in each class). This is (almost) the score that would reach a trivial classifier
predicting always 1 (or always 0).

• Some possible workarounds:
• Transform our data by augmenting the dimension in order to make them

linearly separable.
• Use non-linear model, as the nearest-neighbor method, or the celebrated

neural networks (see the course of the second semester !).
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Chapter 5: Unsupervised learning
This chapter is dedicated to two elementary methods in unsupervised learning: the k-means problem and the Principal
Component Analysis (PCA). Few words are also given about autoencoders.
Recall: Unsupervised learning problems are problems where no labels are accessible.
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Chapter 5: Unsupervised learning
1.1. The k-means problem.
Idea: Consider a set of observations {x1, . . . , xn} in Rd, and an integer k ∈ N.
The main goal of a clustering algorithm is to gather the observations in k groups (clusters) such that:
• Observations belonging to a same cluster should be close to each other,
• Observations belonging to different clusters should be far from each other.
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Chapter 5: Unsupervised learning
1.1. The k-means problem.
Idea: Consider a set of observations {x1, . . . , xn} in Rd, and an integer k ∈ N.
The main goal of a clustering algorithm is to gather the observations in k groups (clusters) such that:
• Observations belonging to a same cluster should be close to each other,
• Observations belonging to different clusters should be far from each other.

cluster 1

cluster 2

cluster 3
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Chapter 5: Unsupervised learning
1.1. The k-means problem.
Idea: Consider a set of observations {x1, . . . , xn} in Rd, and an integer k ∈ N.
The main goal of a clustering algorithm is to gather the observations in k groups (clusters) such that:
• Observations belonging to a same cluster should be close to each other,
• Observations belonging to different clusters should be far from each other.

Definition:

The “k-means problem” consists of performing clustering in the following
way:
We want to find k-points c1, . . . , ck ∈ Rd (called centroids) in order to
minimize the objective function

L(c1, . . . , ck ) := n∑
i=1 min

j=1,...,k||xi − cj ||2. (18)

The clusters C1, . . . , Ck are then given, for j ∈ {1, . . . , k} by

Cj := {i, ||xi − cj || ⩽ ||xi − cj ′ ||, ∀j ′ ̸= j}. (19)

cluster 1

cluster 2

cluster 3
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Chapter 5: Unsupervised learning
1.1. The k-means problem.
Idea: Consider a set of observations {x1, . . . , xn} in Rd, and an integer k ∈ N.
The main goal of a clustering algorithm is to gather the observations in k groups (clusters) such that:
• Observations belonging to a same cluster should be close to each other,
• Observations belonging to different clusters should be far from each other.

Definition:

The “k-means problem” consists of performing clustering in the following
way:
We want to find k-points c1, . . . , ck ∈ Rd (called centroids) in order to
minimize the objective function

L(c1, . . . , ck ) := n∑
i=1 min

j=1,...,k||xi − cj ||2. (18)

The clusters C1, . . . , Ck are then given, for j ∈ {1, . . . , k} by

Cj := {i, ||xi − cj || ⩽ ||xi − cj ′ ||, ∀j ′ ̸= j}. (19)

Distance between the observation xi and its closest
centroid cj .

cj is the closest centroid with respect to xi

cluster 1

cluster 2

cluster 3
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Chapter 5: Unsupervised learning
1.1. The k-means problem.
Idea: Consider a set of observations {x1, . . . , xn} in Rd, and an integer k ∈ N.
The main goal of a clustering algorithm is to gather the observations in k groups (clusters) such that:
• Observations belonging to a same cluster should be close to each other,
• Observations belonging to different clusters should be far from each other.

Definition:

The “k-means problem” consists of performing clustering in the following
way:
We want to find k-points c1, . . . , ck ∈ Rd (called centroids) in order to
minimize the objective function

L(c1, . . . , ck ) := n∑
i=1 min

j=1,...,k||xi − cj ||2. (18)

The clusters C1, . . . , Ck are then given, for j ∈ {1, . . . , k} by

Cj := {i, ||xi − cj || ⩽ ||xi − cj ′ ||, ∀j ′ ̸= j}. (19)

Distance between the observation xi and its closest
centroid cj .

cj is the closest centroid with respect to xi

c1

c2

c3
cluster 1

cluster 2

cluster 3
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .

Step 3 - Update centroids: For j = 1, . . . , k , do :

cj ←
1#Cj ∑i∈Cj xi.
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .

Step 3 - Update centroids: For j = 1, . . . , k , do :

cj ←
1#Cj ∑i∈Cj xi.

Step 4 - Iteration: Repeat steps 2 and 3 until convergence, that is when the
centroids are no longer moving.
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .

Step 3 - Update centroids: For j = 1, . . . , k , do :

cj ←
1#Cj ∑i∈Cj xi.

Step 4 - Iteration: Repeat steps 2 and 3 until convergence, that is when the
centroids are no longer moving.
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .

Step 3 - Update centroids: For j = 1, . . . , k , do :

cj ←
1#Cj ∑i∈Cj xi.

Step 4 - Iteration: Repeat steps 2 and 3 until convergence, that is when the
centroids are no longer moving.
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .

Step 3 - Update centroids: For j = 1, . . . , k , do :

cj ←
1#Cj ∑i∈Cj xi.

Step 4 - Iteration: Repeat steps 2 and 3 until convergence, that is when the
centroids are no longer moving.
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Input: Data x1, . . . , xn. Integer k (number of clusters desired).

Step 2 - Assignment: For i ∈ {1, . . . , n} determine the closest centroids cj to xi.
Denote it by xi → cj .
Store in Cj all the xi such that xi → cj .

Step 1 - Initialisation: Pick initial positions for the centroids (e.g. randomly) :
c1, . . . , ck .

Step 3 - Update centroids: For j = 1, . . . , k , do :

cj ←
1#Cj ∑i∈Cj xi.

Step 4 - Iteration: Repeat steps 2 and 3 until convergence, that is when the
centroids are no longer moving.

Step 5 - Output: Return the clusters C1, . . . , Ck and the centroids c1, . . . , ck .
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Proposition:

At each iteration of the Lloyd algorithm, the objective value L(c1, . . . , ck ) decreases.
Given that L ⩾ 0, the objective value converges.
In addition, assuming the xi are in a generic configuration, the centroids (cj )j=1,...,k (and thus the clusters (Cj )j=1,...,k)
converge as well. Therefore, the Lloyd algorithm converges toward a configuration that is a local minimizer of
the “energy” of the system.

Exercise: Prove it.
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Chapter 5: Unsupervised learning
1.2. Solving the k-means problem: Lloyd algorithm (1957).

Proposition:

At each iteration of the Lloyd algorithm, the objective value L(c1, . . . , ck ) decreases.
Given that L ⩾ 0, the objective value converges.
In addition, assuming the xi are in a generic configuration, the centroids (cj )j=1,...,k (and thus the clusters (Cj )j=1,...,k)
converge as well. Therefore, the Lloyd algorithm converges toward a configuration that is a local minimizer of
the “energy” of the system.

Exercise: Prove it.

Warning: We just have local convergence, that is slightly perturbing the centroids (cj )kj=1
cannot decrease the objective L.
But there could exist different configuration that would be significantly better.
This is an consequence of the objective function being non-convex.
There is no efficient algorithm (that is, with polynomial complexity) that would be guaranted
to converge toward a global minimizer of the k-means problem. The problem is said to be
NP-hard.
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.

L-final : 0.24L-final : 0.27

• The output depends on the initialization. As the objective function in k-means is non-convex, the result we get (and
its quality, the running time, etc.) can depend on the initialization (often random) of the algorithm.
→ Trick: try several initialization and start from the best one.
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
• Picking the number of centroid k . The k-means problem requires to “guess” the correct number of centroids to use.
Using too many/few of them yields unsatisfactory results.
→ “Elbow rule” : try different value for k . When the limit energy stagnates, we may have reach a relevant value for k .

Output of Lloyd’s alg. k = 3 Output of Lloyd’s alg. k = 7
Evolution of final L wrt k .
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
• Picking the number of centroid k . The k-means problem requires to “guess” the correct number of centroids to use.
Using too many/few of them yields unsatisfactory results.
→ “Elbow rule” : try different value for k . When the limit energy stagnates, we may have reach a relevant value for k .

Output of Lloyd’s alg. k = 3 Output of Lloyd’s alg. k = 7
Evolution of final L wrt k .

Warning: Sometimes, even the question of the “number of clusters”
is meaningless...
→ multi-scale approaches.
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
• Picking the number of centroid k . The k-means problem requires to “guess” the correct number of centroids to use.
Using too many/few of them yields unsatisfactory results.
→ “Elbow rule” : try different value for k . When the limit energy stagnates, we may have reach a relevant value for k .

Output of Lloyd’s alg. k = 3 Output of Lloyd’s alg. k = 7
Evolution of final L wrt k .

Warning: Sometimes, even the question of the “number of clusters”
is meaningless...
→ multi-scale approaches.

4 clusters ?
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
• Picking the number of centroid k . The k-means problem requires to “guess” the correct number of centroids to use.
Using too many/few of them yields unsatisfactory results.
→ “Elbow rule” : try different value for k . When the limit energy stagnates, we may have reach a relevant value for k .

Output of Lloyd’s alg. k = 3 Output of Lloyd’s alg. k = 7
Evolution of final L wrt k .

Warning: Sometimes, even the question of the “number of clusters”
is meaningless...
→ multi-scale approaches.

15 clusters ?
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
• Picking the number of centroid k . The k-means problem requires to “guess” the correct number of centroids to use.
Using too many/few of them yields unsatisfactory results.
→ “Elbow rule” : try different value for k . When the limit energy stagnates, we may have reach a relevant value for k .

Output of Lloyd’s alg. k = 3 Output of Lloyd’s alg. k = 7
Evolution of final L wrt k .

Warning: Here, everything may look easy because we can visualize our data since they are in dimension 2. But in higher
dimension, one must be able to understand and interpret the results without being able to visualize the data.
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Chapter 5: Unsupervised learning
1.3 - Limitations of k-means / Lloyd.
• Linear boundaries: k-means is a linear clustering model, which means (similarly to linear classification models) that it
can only perform well on clusters that can be separated by an hyperplane.

Linear separation between the clusters

Dataset without natural linear separatation between the clusters
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).

This is a method to perform dimensionality reduction. Assume that we are given observations x1, . . . , xn ∈ RD with D
large. We want to build a point cloud x̂1, . . . , x̂n in Rd with d≪ D that “looks like” the initial observations.
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).

This is a method to perform dimensionality reduction. Assume that we are given observations x1, . . . , xn ∈ RD with D
large. We want to build a point cloud x̂1, . . . , x̂n in Rd with d≪ D that “looks like” the initial observations.

As we are reducing the dimension, we are “compressing” the data. We will necessarily lose information, the goal is to
lose it as few as possible. The information is measured in terms of variance, that should be maximized.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 5 — (p. 30/42)

Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).

This is a method to perform dimensionality reduction. Assume that we are given observations x1, . . . , xn ∈ RD with D
large. We want to build a point cloud x̂1, . . . , x̂n in Rd with d≪ D that “looks like” the initial observations.

As we are reducing the dimension, we are “compressing” the data. We will necessarily lose information, the goal is to
lose it as few as possible. The information is measured in terms of variance, that should be maximized.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 5 — (p. 31/42)

Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).

This is a method to perform dimensionality reduction. Assume that we are given observations x1, . . . , xn ∈ RD with D
large. We want to build a point cloud x̂1, . . . , x̂n in Rd with d≪ D that “looks like” the initial observations.

As we are reducing the dimension, we are “compressing” the data. We will necessarily lose information, the goal is to
lose it as few as possible. The information is measured in terms of variance, that should be maximized.

Main idea: We will identify directions (“principal components”)
e1, e2, . . . , eD (a basis of RD) such that:
• e1 is the direction in which the variance of your set of observations is

maximal, e2 is the second highest, and so on.
• For each direction, we have access to a value λ1 ⩾ λ2 ⩾ . . . λD which

roughly indicates how large the variance is in that direction.
• We pick the d first directions and we project our observation on(e1, . . . , ed).

e1
e2e3
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).
• A formal analysis of the PCA.

Let X ∈ Rn×D denote a dataset of n observations in dimension D. Assume that X is centered, that is 1nX = 0, where1n = (1, . . . , 1) ∈ Rn. This can be obtained by translating the dataset by − 1
n
∑n

j=1 xj .
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).
• A formal analysis of the PCA.

Let X ∈ Rn×D denote a dataset of n observations in dimension D. Assume that X is centered, that is 1nX = 0, where1n = (1, . . . , 1) ∈ Rn. This can be obtained by translating the dataset by − 1
n
∑n

j=1 xj .
Definition:

The covariance of X is the matrix C = XTX ∈ RD×D.

Interpretation: This D ×D matrix indicates the similarity between the features (the D coordinates of the points in X).
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).
• A formal analysis of the PCA.

Let X ∈ Rn×D denote a dataset of n observations in dimension D. Assume that X is centered, that is 1nX = 0, where1n = (1, . . . , 1) ∈ Rn. This can be obtained by translating the dataset by − 1
n
∑n

j=1 xj .
Definition:

The covariance of X is the matrix C = XTX ∈ RD×D.

Interpretation: This D ×D matrix indicates the similarity between the features (the D coordinates of the points in X).

Question / Exercise: What is the direction u (i.e. a unit vector in RD) that would maximize the variance of the projection
of X along u, that is : which u ∈ SD maximizes u 7→ (Xu)TXu?
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).
• A formal analysis of the PCA.

Let X ∈ Rn×D denote a dataset of n observations in dimension D. Assume that X is centered, that is 1nX = 0, where1n = (1, . . . , 1) ∈ Rn. This can be obtained by translating the dataset by − 1
n
∑n

j=1 xj .
Definition:

The covariance of X is the matrix C = XTX ∈ RD×D.

Interpretation: This D ×D matrix indicates the similarity between the features (the D coordinates of the points in X).

Observation: It is symmetric (and real-valued), hence diagonalisable in an orthonormal basis. Let λ1 ⩾ λ2 ⩾ . . . ⩾ λD ⩾ 0
denote its eigenvalues (in decreasing order), and let Q be the transition matrix, that is C = QT∆Q with∆ = diag(λ1, . . . , λD).

Because C is
positive
semi-definite
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).
• A formal analysis of the PCA.

Let X ∈ Rn×D denote a dataset of n observations in dimension D. Assume that X is centered, that is 1nX = 0, where1n = (1, . . . , 1) ∈ Rn. This can be obtained by translating the dataset by − 1
n
∑n

j=1 xj .
Definition:

The covariance of X is the matrix C = XTX ∈ RD×D.

Interpretation: This D ×D matrix indicates the similarity between the features (the D coordinates of the points in X).

Observation: It is symmetric (and real-valued), hence diagonalisable in an orthonormal basis. Let λ1 ⩾ λ2 ⩾ . . . ⩾ λD ⩾ 0
denote its eigenvalues (in decreasing order), and let Q be the transition matrix, that is C = QT∆Q with∆ = diag(λ1, . . . , λD).

Because C is
positive
semi-definite

• Now, let u ∈ RD be a unit vector and Xu be the projection of X in that direction. Asking that Xu has the
largest possible variance means that (Qu)T∆(Qu)
should be maximized, which tells us that Qu = (1, 0, . . . , 0)T ∈ RD, that is u is the first column of QT , i.e. the
(unit) eigenvector e1 associated to λ1. Now, the second best direction (orthogonal to e1) is the second column
of Q, etc.
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Chapter 5: Unsupervised learning
2. Principal Component Analysis (PCA).

This is a method to perform dimensionality reduction. Assume that we are given observations x1, . . . , xn ∈ RD with D
large. We want to build a point cloud x̂1, . . . , x̂n in Rd with d≪ D that “looks like” the initial observations.

In practice: We use the class PCA() of sklearn.decomposition.
We can specify (among other things):
• n_components, the number of dimension ("components") that we want to keep. If set to None, all components are

kept (and we can select them afterwards),
then we retrieve (after running the method .fit(X)) the methods
• .transform(X) that applies the dimensionality reduction (projection) to the observations X.
• .components_ that returns the (eigen)vectors that indicate the principal components.
• .explained_variance_ratio_, that indicate the contribution (in percentage) of each direction in terms of

variance. For instance, the output [0.52, 0.45, 0.03] is interpreted as “the first component accounts for 52% of
the variance of my observations, the second 45%, and the third one 3%”.
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Chapter 5: Unsupervised learning
3. Autoencoders
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Chapter 5: Unsupervised learning
3. Autoencoders
Let X and Z be two spaces. An autoencoder (AE) is a couple of two parametrized models Eθ : X → Z
and Dγ : Z → X trained such that (essentially)

x ≃ Dγ(Eθ(x)).
Eθ is said to be the encoder and Dγ is the decoder. The set Z is called the latent space.

X XZEθ Dγ

Encoding Decoding
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Chapter 5: Unsupervised learning
3. Autoencoders
Let X and Z be two spaces. An autoencoder (AE) is a couple of two parametrized models Eθ : X → Z
and Dγ : Z → X trained such that (essentially)

x ≃ Dγ(Eθ(x)).
Eθ is said to be the encoder and Dγ is the decoder. The set Z is called the latent space.
Typically,
• X = RD and Z = Rd with d≪ D, hence AE can be seen as dimensionality reduction techniques.
• Eθ and Dγ are neural networks, i.e. sequences of linear transformations followed by non-linear

activations: x = x0 → σ1(W1x0 + b1) = x1 → σ2(W2x1 + b2) = x2 → · · · → xL.
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Chapter 5: Unsupervised learning
3. Autoencoders
Let X and Z be two spaces. An autoencoder (AE) is a couple of two parametrized models Eθ : X → Z
and Dγ : Z → X trained such that (essentially)

x ≃ Dγ(Eθ(x)).
Eθ is said to be the encoder and Dγ is the decoder. The set Z is called the latent space.
Typically,
• X = RD and Z = Rd with d≪ D, hence AE can be seen as dimensionality reduction techniques.
• Eθ and Dγ are neural networks, i.e. sequences of linear transformations followed by non-linear

activations: x = x0 → σ1(W1x0 + b1) = x1 → σ2(W2x1 + b2) = x2 → · · · → xL.
Some applications:
• Dimensionality reduction and compression,
• Noise reduction: intuitively, if the reconstruction is not perfect, it’s likely (hopefully) that the salient features have

been reproduced and the noise removed,
• Anomaly detection: AE are expected to have worse reconstruction performanced on anomalies,
• Data generation: sampling a new z in Z and then “decoding” it using Dγ should (hopefully) provide a new “likely”

observation!
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Chapter 5: Unsupervised learning
3. Autoencoders
Let X and Z be two spaces. An autoencoder (AE) is a couple of two parametrized models Eθ : X → Z
and Dγ : Z → X trained such that (essentially)

x ≃ Dγ(Eθ(x)).
Eθ is said to be the encoder and Dγ is the decoder. The set Z is called the latent space.
Under-determination: Observe that if we compose Eθ and Dγ by any diffeomorphism φ : Z → Z (i.e. we
consider (φ ◦Dθ , Eγ ◦ φ−1)) the performance is unchanged. Therefore, the problem is heavily
under-determined.
It is thus natural to consider regularized version of AE, either by
• Restricting the class of models (i.e. very shallow networks (L small)),
• Adding regularization in the reconstruction to favor smooth encoder/decoder,
• Add some penalty term on the encoding, e.g. reproduce geometric or topological properties of the

input training set x1, . . . , xn (see “Topological Auto Encoders” for instance).
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Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 6 — (p. 2/31)

Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!
1. Introduction and main idea: Consider data living in a possibly abstract set X (e.g. text, graphs...) and assume that you
can find a feature map φ : X → H where H is a Hilbert space, that is a vector space equipped with an inner-product

⟨·, ·⟩H which is complete for the norm x 7→ ⟨x, x⟩
12
H.

As H has a linear structure, we can run our favorite algorithm (k-means, classification...) using the “representations /
embeddings / featurizations / vectorizations” φ(x). If φ is well-chosen for our problem, we may achieve good performances
even with simple models.
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Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!
1. Introduction and main idea: Consider data living in a possibly abstract set X (e.g. text, graphs...) and assume that you
can find a feature map φ : X → H where H is a Hilbert space, that is a vector space equipped with an inner-product

⟨·, ·⟩H which is complete for the norm x 7→ ⟨x, x⟩
12
H.

As H has a linear structure, we can run our favorite algorithm (k-means, classification...) using the “representations /
embeddings / featurizations / vectorizations” φ(x). If φ is well-chosen for our problem, we may achieve good performances
even with simple models.

Example 2: Say our data are graphs: x = (V ,E), where V is a set of vertices and E ⊂ V × V is the set of edges. We
may define φ : (V ,E) 7→ (#V ,#E, #E#V ) ∈ R3. This may be a good featurisation of our data (e.g. if we need to
discriminate between densely/sparsely connected large/small graphs).

Example 1: Take φ : R2 → R3, defined as φ(a, b) = (a, b, a2 + b2). φ

φ (8, 17, 17/8)(8, 7, 7/8)φ
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Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!
1. Introduction and main idea: Consider data living in a possibly abstract set X (e.g. text, graphs...) and assume that you
can find a feature map φ : X → H where H is a Hilbert space, that is a vector space equipped with an inner-product

⟨·, ·⟩H which is complete for the norm x 7→ ⟨x, x⟩
12
H.

As H has a linear structure, we can run our favorite algorithm (k-means, classification...) using the “representations /
embeddings / featurizations / vectorizations” φ(x). If φ is well-chosen for our problem, we may achieve good performances
even with simple models.

Exercise:
1. Show that performing a polynomial regression of degree d on a set (xi, yi)ni=1 (with observations and labels in R) can

be understood as performing a linear regression for a suited feature map φ. What is the embedding dimension
(dimension of H)? What is the complexity to solve this problem (using the closed form formula , see Chapter 2)?

2. Show that the parameter θ of this linear regression can be assumed to be of the form θ =∑n
i=1 biφ(xi), where

bi ∈ R for i = 1, . . . , n.
3. Deduce that the optimal θ∗ only depends on the Gram matrix G = (⟨φ(xi), φ(xj )⟩)ij and the vector of labels
Y = (y1, . . . , yn).

4. Does the observations made in Questions 2 and 3 depend on the choice of φ? What is the computational complexity
of this approach? Does it depend on the embedding dimension?

5. What can you conclude from this?
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Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!
1. Introduction and main idea: Consider data living in a possibly abstract set X (e.g. text, graphs...) and assume that you
can find a feature map φ : X → H where H is a Hilbert space, that is a vector space equipped with an inner-product

⟨·, ·⟩H which is complete for the norm x 7→ ⟨x, x⟩
12
H.

As H has a linear structure, we can run our favorite algorithm (k-means, classification...) using the “representations /
embeddings / featurizations / vectorizations” φ(x). If φ is well-chosen for our problem, we may achieve good performances
even with simple models.

The crucial observation is that training many linear models (including Linear Regression from the previous example) can
be done by manipulating only the inner-products ⟨φ(xi), φ(xj )⟩H. This is called the kernel trick. It means that we do not
have to explicitly compute the embeddings φ(x), as long as we are capable of computing the inner-products

K (x, x ′) := ⟨φ(x), φ(x ′)⟩H .
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Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!
1. Introduction and main idea: Consider data living in a possibly abstract set X (e.g. text, graphs...) and assume that you
can find a feature map φ : X → H where H is a Hilbert space, that is a vector space equipped with an inner-product

⟨·, ·⟩H which is complete for the norm x 7→ ⟨x, x⟩
12
H.

As H has a linear structure, we can run our favorite algorithm (k-means, classification...) using the “representations /
embeddings / featurizations / vectorizations” φ(x). If φ is well-chosen for our problem, we may achieve good performances
even with simple models.

The crucial observation is that training many linear models (including Linear Regression from the previous example) can
be done by manipulating only the inner-products ⟨φ(xi), φ(xj )⟩H. This is called the kernel trick. It means that we do not
have to explicitly compute the embeddings φ(x), as long as we are capable of computing the inner-products

K (x, x ′) := ⟨φ(x), φ(x ′)⟩H .
??? How could we compute ⟨φ(x), φ(x ′)⟩H without computing the vectorizations φ(x), φ(x ′)?
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Chapter 6: Kernel methods
This chapter is dedicated to a class of methods that enables the use of basics (typically linear) models for data that may
not be linearly separable... or that may not even be living in a Euclidean space!
1. Introduction and main idea: Consider data living in a possibly abstract set X (e.g. text, graphs...) and assume that you
can find a feature map φ : X → H where H is a Hilbert space, that is a vector space equipped with an inner-product

⟨·, ·⟩H which is complete for the norm x 7→ ⟨x, x⟩
12
H.

As H has a linear structure, we can run our favorite algorithm (k-means, classification...) using the “representations /
embeddings / featurizations / vectorizations” φ(x). If φ is well-chosen for our problem, we may achieve good performances
even with simple models.

The crucial observation is that training many linear models (including Linear Regression from the previous example) can
be done by manipulating only the inner-products ⟨φ(xi), φ(xj )⟩H. This is called the kernel trick. It means that we do not
have to explicitly compute the embeddings φ(x), as long as we are capable of computing the inner-products

K (x, x ′) := ⟨φ(x), φ(x ′)⟩H .
??? How could we compute ⟨φ(x), φ(x ′)⟩H without computing the vectorizations φ(x), φ(x ′)?
Bold (but brilliant) idea: Define K : X × X → R first, and hope that if K satisfies some good properties, then there may
exist a Hilbert space H and a feature map φ : X → H such that K (x, x ′) = ⟨φ(x), φ(x ′)⟩H.
If this holds, we can directly compute the Gram matrix G from the (K (xi, xj ))ij without never explicitly computing the φ(x)!
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Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)
Consider a set X and a map K : X × X → R. Let us try to find some necessary conditions on K to have

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for some Hilbert space H and some φ : X → H.
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Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)
Consider a set X and a map K : X × X → R. Let us try to find some necessary conditions on K to have

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for some Hilbert space H and some φ : X → H.

• First, K should be symmetric.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 6 — (p. 10/31)

Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)
Consider a set X and a map K : X × X → R. Let us try to find some necessary conditions on K to have

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for some Hilbert space H and some φ : X → H.

• First, K should be symmetric.

• Second, observe that for any n ∈ N, λ1, . . . , λn ∈ R, x1, . . . , xn ∈ X ,

0 ⩽ ||
n∑
i=1 λiφ(xi)||2H = ∑

1⩽i,j⩽n λiλj ⟨φ(xi), φ(xj )⟩H = ∑
1⩽i,j⩽n λiλjK (xi, xj ). (20)
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Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)
Consider a set X and a map K : X × X → R. Let us try to find some necessary conditions on K to have

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for some Hilbert space H and some φ : X → H.

• First, K should be symmetric.

• Second, observe that for any n ∈ N, λ1, . . . , λn ∈ R, x1, . . . , xn ∈ X ,

0 ⩽ ||
n∑
i=1 λiφ(xi)||2H = ∑

1⩽i,j⩽n λiλj ⟨φ(xi), φ(xj )⟩H = ∑
1⩽i,j⩽n λiλjK (xi, xj ). (20)

Definition:

A map K : X × X → R satisfying these two assumptions is said to be a positive semidefinite (PSD) kernel.
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Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)

Theorem:

Let K be a PSD kernel on a set X . Then there exists a Hilbert space H and a map φ : X → H
such that

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for all x, x ′ in X .
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Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)

Theorem:

Let K be a PSD kernel on a set X . Then there exists a Hilbert space H and a map φ : X → H
such that

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for all x, x ′ in X .

Proof: Define φ : X → RX as φ(x) = K (x, ·). Let H0 be the vector space of all finite sums
∑n

i=1 λiφ(xi), for
n ∈ N, λi ∈ R, xi ∈ X . Now, for f =∑n

i=1 λiφ(xi) and g =∑m
j=1 µjφ(x ′j ) in H0, define

⟨f , g⟩H0 := n∑
i=1

m∑
j=1 λiµjφ(xi)φ(x ′j ),

and check that it properly defines an inner product on H0. Eventually, consider the completion H of H0, that is a Hilbert
space by definition, and observe that ⟨φ(x), φ(x ′)⟩H = K (x, x ′) by construction.



CS for Data Sciences - Université Gustave Eiffel - year 2024-2025 - T. Lacombe Ch. 6 — (p. 14/31)

Chapter 6: Kernel methods
2. Reproducing Kernel Hilbert Spaces (RKHS)

Theorem:

Let K be a PSD kernel on a set X . Then there exists a Hilbert space H and a map φ : X → H
such that

K (x, x ′) = ⟨φ(x), φ(x ′)⟩H
for all x, x ′ in X .

Remark (some terminology): Since we defined φ(x) = K (x, ·), observe that for any f =∑n
i=1 λiφ(xi) in H0 (and by limit in

H), one has

f (x) = n∑
i=1 λiφ(xi)(x) = n∑

i=1 λiK (xi, x) = n∑
i=1 λi ⟨φ(xi), φ(x)⟩H0 = ⟨f , φ(x)⟩H0 = ⟨f , K (x, ·)⟩H0

so in a nutshell we can evaluate f at x by computing the inner-product of f with K (x, ·), so we can “reproduce” f from the
kernel K , hence we say that H is a Reproducing Kernel Hilbert Space (associated to the reproducing kernel K ).
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Chapter 6: Kernel methods
3. Some properties and examples.

Proposition:

Let K1, K2 be two PSD kernels on a set X . Then,
1. K1 + K2 is a PSD kernel,
2. K1 · K2 is a PSD kernel,
3. If X ⊂ Rd and K (x, x ′) = h(x − x ′) for some h, then K is a kernel if the Fourier transform of h

ĥ(ω) := ∫ e−2iπ⟨ω,x⟩h(x)dx
is non-negative for every ω ∈ Rd.

Proof: Exercise.
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Chapter 6: Kernel methods
3. Some properties and examples.

Proposition:

1. If φ : X → H for some Hilbert space H, then K (x, x ′) = ⟨φ(x), φ(x ′)⟩H is a Kernel.
2. If K is a kernel, K n is a kernel for n ∈ N. In particular, (x, x ′) 7→ ⟨x, x ′⟩nH defines a kernel on H (you can take
H = Rd).

3. For σ > 0, the function Kσ : Rd × Rd → R given by

K (x, x ′) = exp(−||x − x ′||22σ2
)

defines the so-called Gaussian kernel (also called RBF).

Proof: 1. and 2. are clear (2. follows by induction from the previous proposition). For 3., exercise!
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Chapter 6: Kernel methods
3. Some properties and examples.

Some intuition: The Gaussian Kernel (x, x ′) 7→ exp(− ||x−x ′||222σ2
)

is widely used as it naturally catches some geometric
information of your (Euclidean) data :
• x close to x ′ ⇒ ||x − x ′|| small ⇒ K (x, x ′) ≃ 1 → high similarity,
• x far from x ′ ⇒ ||x − x ′|| large ⇒ K (x, x ′) = ⟨φ(x), φ(x ′)⟩H ≃ 0 → the embeddings are (almost) orthogonal in the

Hilbert space.

Illustration on linearly separable clusters Illustration on non-linearly separable clusters
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.1. Kernel PCA.
Let X be a set, that we do not assume to be Euclidean (e.g. words, graphs...). Let X = (x1, . . . , xn) ⊂ X be a set of
observations, and assume that we are given a kernel K on X , and φ : X → H be the corresponding feature map (with
RKHS H).
As X has no structure, we cannot apply PCA on X directly. However, we can consider the embedded point cloud
Z = (φ(x1), . . . , φ(xn)) ⊂ H.
Recall that PCA in Rd required to compute the d× d covariance matrix C = XTX . Here, as H may be infinite
dimensional, this does not make sense, and we rather consider the Gram matrix ZZT ∈ Rn×n whose coordinates are by
definition K (xi, xj ), that can also be diagonalized, etc. This only requires to know K , not φ.

Credit: Vincent Divol

Application: Take a batch of 785 words with two main groups: words refering to countries
(e.g. France, Italy, India, etc.) and words refering to feelings (e.g. sadness, joy, etc.). Build
a Kernel based on the W2V-embedding [Mikolov et al., 2013], and apply Kernel-PCA with
dimension 2.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

The Support Vector Machine (SVM) is a very popular model to design some sort of “optimal linear classifier” for binary
classification. As we’ll see, though being linear in its seminal formulation, it can be “kernelized” and thus used to separate
non-linear data.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

We consider a binary classification problem, with Y = {−1,+1} (for convenience).
Assume first that the observations are in X = Rd, and that they are linearly separable.
The performance (accuracy) of a (binary) classifier is entirely determined by its decision boundary. Many classifiers could
be optimal for our problem...
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

We consider a binary classification problem, with Y = {−1,+1} (for convenience).
Assume first that the observations are in X = Rd, and that they are linearly separable.
The performance (accuracy) of a (binary) classifier is entirely determined by its decision boundary. Many classifiers could
be optimal for our problem...

... But some classifiers are more optimal than others!
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

Idea: The (linear) SVM model encourages the decision boundary to maximize a
margin condition: being as far as possible from the observations (⇒ more robust,
better generalization, etc.).
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

Idea: The (linear) SVM model encourages the decision boundary to maximize a
margin condition: being as far as possible from the observations (⇒ more robust,
better generalization, etc.).

Formally: An affine hyperplane Hw,b of Rd is described the equation

wT x − b = 0,
where w ∈ Rd is a normal vector of the hyperplane and b ∈ R. Saying that Hw,b
perfectly separates the data (xi, yi)ni=1 means that for all i = 1, . . . , n

wT xi − b > 0 if yi = 1, wT xi − b < 0 if yi = −1
or, in compact form and using that we can rescale w, b,

∀i = 1, . . . , n, yi(wT xi − b) ⩾ 1 (21)

w

{wT x − b = 0}

Area where
wT x − b > 0

Area where
wT x − b < 0
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

Idea: The (linear) SVM model encourages the decision boundary to maximize a
margin condition: being as far as possible from the observations (⇒ more robust,
better generalization, etc.).

Formally: An affine hyperplane Hw,b of Rd is described the equation

wT x − b = 0,
where w ∈ Rd is a normal vector of the hyperplane and b ∈ R. Saying that Hw,b
perfectly separates the data (xi, yi)ni=1 means that for all i = 1, . . . , n

wT xi − b > 0 if yi = 1, wT xi − b < 0 if yi = −1
or, in compact form and using that we can rescale w, b,

∀i = 1, . . . , n, yi(wT xi − b) ⩾ 1 (21)

w

{wT x − b = 0}

Area where
wT x − b > 0

Area where
wT x − b < 0

Eventually, the margin of a valid Hw,b is given by the distance between the two limit hyperplanes {wT x − b = ±1} and the
distance between these two hyperplanes is 2

||w|| (homework), so maximizing the margin means minimizing ||w||.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

w

{wT x − b = 0}

Area where
wT x − b > 0

Area where
wT x − b < 0

Definition:

The hard-margin linear SVM model is the (binary) classifier defined by

x 7→ sign(wT x − b),
where w ∈ Rd and b ∈ R are solutions of the constrained optimization
problem

min
w,b
||w||2,

subject to ∀i = 1, . . . , n, yi(wT xi − b) ⩾ 1.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

w

{wT x − b = 0}

Area where
wT x − b > 0

Area where
wT x − b < 0

Remark: If the observations are not linearly separable, the set of valid hyperplanes
for the hard-margin SVM is empty (the problem is infeasible). Therefore, it is
convenient to consider a softened version of SVM in practice.

Definition:

The soft-margin linear SVM model is the (binary) classifier defined by

x 7→ sign(wT x − b),
where w ∈ Rd and b ∈ R are solutions of the unconstrained optimization
problem

min
w,b

{
||w||2 + λ1

n

n∑
i=1 ψ(1− yi(wT xi − b))} ,

where λ > 0 is an hyper-parameter and ψ : R→ R is a divergence (we pay
we when violate the constraint); for instance one can use ψ(t) = max(0, t)—
the so-called Hinge loss.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

Kernel trick: Eventually, assume now that our observations (xi)ni=1 belong to a set X equipped with a (PSD) kernel
K : X × X → R. We know that there exist a Hilbert space H and a map φ : X → H such that K (x, x ′) = ⟨φ(x), φ(x ′)⟩H.
Let us show that we can solve the SVM problem in the embedding space H, namely

min
w,b

{
||w||2 + λ1

n

n∑
i=1 ψ(1− yi(⟨w, φ(xi)⟩H − b))} , with w ∈ H, b ∈ R, (22)

by only manipulating K (i.e. we do not need to know φ nor H). For this, we rely on the following proposition...
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

Kernel trick: Eventually, assume now that our observations (xi)ni=1 belong to a set X equipped with a (PSD) kernel
K : X × X → R. We know that there exist a Hilbert space H and a map φ : X → H such that K (x, x ′) = ⟨φ(x), φ(x ′)⟩H.
Let us show that we can solve the SVM problem in the embedding space H, namely

min
w,b

{
||w||2 + λ1

n

n∑
i=1 ψ(1− yi(⟨w, φ(xi)⟩H − b))} , with w ∈ H, b ∈ R, (22)

by only manipulating K (i.e. we do not need to know φ nor H). For this, we rely on the following proposition...

Proposition:

When solving (22), one can restrict to w =∑n
i=1 aiφ(xi).

Exercise: Prove this proposition.
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Chapter 6: Kernel methods
4. Examples of Kernel trick.
• 4.2. Kernel SVM.

Kernel trick: Eventually, assume now that our observations (xi)ni=1 belong to a set X equipped with a (PSD) kernel
K : X × X → R. We know that there exist a Hilbert space H and a map φ : X → H such that K (x, x ′) = ⟨φ(x), φ(x ′)⟩H.
Let us show that we can solve the SVM problem in the embedding space H, namely

min
w,b

{
||w||2 + λ1

n

n∑
i=1 ψ(1− yi(⟨w, φ(xi)⟩H − b))} , with w ∈ H, b ∈ R, (22)

by only manipulating K (i.e. we do not need to know φ nor H). For this, we rely on the following proposition...

Proposition:

When solving (22), one can restrict to w =∑n
i=1 aiφ(xi).

Corollary: We can solve the SVM problem with the embedded observations φ(x1), . . . , φ(xn) by solving (e.g. with Gradient Descent)

min
a∈Rn,b∈R

 ∑
1⩽i,j⩽naiajK (xi, xj ) + λ

n
∑

1⩽i⩽nψ
1− yi

 n∑
j=1 ajK (xi, xj )− b

 .
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Chapter 6: Kernel methods
5. Some limitations of Kernel methods.
• Choosing/Defining a good kernel is often hard.
• Losing interpretability: “what happen in the RKHS stays in the RKHS”. For instance, you may

compute an average µ := 1
n
∑n

i=1 φ(xi) ∈ H, but there is no reason to expect that there exists some x
such that µ = φ(x).

• You typically need to compute and store the Gram matrix, which is of size n× n, yielding a
complexity of O(n2). If you need to invert or diagonalize it, the complexity becomes O(n3), which
tends to be prohibitive for large n (say n ⩾ 104).


