
INF 556: Topological Data Analysis Fall 2018

Lecture 1: Introduction to dimensionality reduction

Lecturer: Steve Oudot T.A.: Théo Lacombe

Disclaimer:

Some typo and errors may remain. Please mention them at theo.lacombe@polytechnique.edu. Use

these notes with caution, especially during the exam (we decline all responsibility linked with the use of

these notes during the exam session).

Reminder: These notes are a concise summary of the lectures. They do not intend in any case to

substitute to your personal notes and are just an additional support in order to clarify or insist on some

points.

1.1 PCA vs MDS

In the following, we consider a dataset described by a matrix P ∈ Rn×d, where n is the number of points

and d the dimension (i.e the number of features used to describe each point pi ∈ Rd). We assume that P
is centered, that is, each column sums up to 0.1

Froebenius norm: We remind that the Froebenius norm of a square matrix is de�ned by:

||M ||2F =
∑
i,j

M2
i,j

PCA MDS

Optimize arg min
E∈Gr(d,k)

 1

n

n∑
i=1

||pi − πE(pi)︸ ︷︷ ︸
orth. proj.

||2

 arg min
Y ∈Rn×k

{
||Y Y T − PP T ||2F

}

Matrix of interest Covariance: C := 1
nP

TP ∈ Rd×d Gram: G := PP T ∈ Rn×n

Diagonalization C = QTDQ G = RTFR

where Q =

[e1]
...

[ed]

 , D =


λ1

. . . 0
λr

0 0

 F =


δ1

. . . 0
δr

0 0


with λ1 > ... > λr > 0

Solution : take X = PQT take Y = RT
√
F

(so that Y Y T = RTFR = G)

1This can basically be obtained by setting P ← P − 1
n

∑
pi
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These two methods have a similar outline, despite not optimizing the same quantity. When data are

in Rd, there is a clear link between PCA and MDS which can be highlighted by using the SVD (Singular

Values Decomposition) of the matrix P . Indeed, one can always write:

P = UTD′V

where:

D′ =


µ1

. . . 0
µs

0 0


Then, with these notations, one can observe that PCA and MDS are written as:

PCA MDS

Matrix of interest C = 1
nP

TP = 1
nV

TD′TD′V G = PP T = UTD′D′TU

Uniqueness of eigenvalues: ⇒


D = D′TD′/n
r = s
∀i, µ2i = nλi

⇒


F = D′D′T

r = s
∀i, µ2i = δi

Take: X ′ = PV T Y ′ = UTD′

Link with previous solutions: X ′ (V QT )︸ ︷︷ ︸
orth. transform.

= PQT = X (RTU)︸ ︷︷ ︸
orth. transform.

Y ′ = RT
√
FIdn,d = Y In,d

So we �nally have that:

P = UTD′V ⇒ PV T = UTD′

⇒ X ′ = Y ′

That is, solutions provided by PCA and MDS written with these coordinates are exactly the same, and

more generally, they are the same up to an orthogonal transformation.

In this framework, the core di�erence lies in the fact that PCA involves working with a d× d matrix

while MDS considers a n × n matrix. Make the good choice regarding your dataset! Otherwise, you can

also use the SVD formulation.

1.2 Metric MDS

However, a deeper di�erence between PCA and MDS is that PCA explicitly makes use of a description of

your data in Rd, while MDS only requires a (dis)similarity measure between your points.2

Consider given a dataset p1..pn and a squared distance matrix ∆ ∈ Rn×n, that is:

∀i, j,∆ij = d(pi, pj)
2

2This is useful if you do not have access to a straightforward representation of your points in Rd. E.g. your data are
customers and you have access to a function s(x, y) which represents how customers x and y are similar to each other (for
instance a similarity derived from purchasing habits), but you have no canonical representation of your customers in Rd.
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Case 1: Your data are actually in a Euclidean space (i.e Rd) and d(pi, pj) = ||pi − pj ||2. Then, you can

set (double centering):

G := −1

2
H∆H

where H = In − 1
n

1 · · · 1
...

. . .
...

1 · · · 1


Proposition 1. G is then the inner product matrix:

∀i, j, Gij = 〈pi, pj〉

So we can apply MDS on G and get an embedding X with XXT = G.

Case 2: (general case) d is not a Euclidean distance. However, one can still set:

G := −1

2
H∆H

Then, G is not an inner product matrix, butG remains symmetric thus diagonalizable (with potentially

negative eigenvalues).

We can apply MDS on G and get an embedding X that minimizes ||XXT−G||2F , i.e that best preserves
the Gram matrix (which can be understood as a measure of similarity between your data).

1.3 Isomap

Principle: Apply metric MDS to the matrix of distances along the (potentially curved) object.

Theorem 1 (De Silva, Langford, Tenenbaum - 2000). If the object S is de�ned as S = ϕ(Ω) where:

• Ω is a convex set in Rk

• ϕ : Ω→ Rd is an isometry (preserves distances)

Then metric MDS applied to the matrix of pairwise squared distances along S gives an embedding X ∈ Rn×k

that preserves these distances exactly.

In practice:

• Approximate the pairwise distances along S by:

1. computing some neighborhood graph (e.g. connect every data point to every other data point

within Euclidean distance ε for some �xed ε > 0.

2. Computing the distances in the obtained graph.

• Apply metric MDS to the resulting squared distance matrix.
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Take home messages:

• PCA is good when you have a lot of data explicitly represented in Rd. PCA is looking for similarities

between features by computing the covariance matrix C ∈ Rd×d.

• MDS is looking for similarities between data points by computing the Gram matrix G ∈ Rn×n. It

turns out to be more e�cient than PCA if you have few data points in very high dimension (e.g.

you can have 100 images represented in Rd'106 , each coordinate corresponding to a given pixel).

• MDS can be extended to be applied in metric spaces (with no explicit representation of your data

in Rd).

• Isomap consists in applying metric MDS to (an approximation of) the distance along an object.


