
INF 556: Topological Data Analysis Fall 2018

Lecture 2: Clustering and introduction to persistence

Lecturer: Steve Oudot T.A.: Théo Lacombe

Disclaimer:

Some typo and errors may remain. Please mention them at theo.lacombe@polytechnique.edu. Use

these notes with caution, especially during the exam (we decline all responsibility linked with the use of

these notes during the exam session).

Reminder: These notes are a concise summary of the lectures. They do not intend in any case to

substitute to your personal notes and are just an additional support in order to clarify or insist on some

points.

2.1 Mode-seeking

Input: A point cloud (p1 . . . pn) ⊂ Rd.

Assumptions:

• The pis are sampled i.i.d according to some unknown probability distribution µ with (unknown)

density f with respect to the Lebesgue measure.

• f is regular, typically a Morse function: twice di�erentiable, �nitely many critical points, non-

degenerate (Hessian matrix is non-singular), all distinct criticala values.

Note: The gradient vector �eld x 7→ ∇f(x) is Lipschitz continuous which implies that it can be integrated

into a gradient �ow Φ : R+ × Rd → Rd whose trajectories are solution of the ODE (Cauchy-Lipschitz

theorem):

γ′x(t) = ∇f ◦ γx(t)

γx(0) = x

Theorem 1. If f is Morse, then almost every point of Rd ends up at a maximum of f when following the

gradient �ow (integration of the gradient vector �eld) of f .

Principle: Cluster Rd by the ascending regions (Asc(p) = {x ∈ Rd|p ∈ Imγx}) of the peaks of f . In

practice, it can be simulated by Hill-climbing algorithm.

Limitations: In practice, we don't have access to f , and produce with our observations p1 . . . pn an

estimator of f noted f̂n. This estimator may be noisy, which makes appear many (irrelevant) local-

maxima, all of them identi�ed as an individual cluster.

(One) Solution: Compute the persistence (see below for an introduction) of local maxima and �lter

those with low persistence (viewed as topological noise).
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2.2 Degree-0 persistence (Size theory)

2.2.1 De�nition

Input: f : X → R.
Idea: In order to understand (degree-0) topology of f , we want to look at the (path-)connected components

of the excursion sets induced by f (called a �ltration):

• sublevel sets: f−1((−∞, t])

• superlevel sets: f−1([t,+∞))

Assumption: f is tame, i.e. every excursion set has �nitely many (path-)connected components (cc).

We de�ne:

F (t) := f−1((−∞, t])
π0F (t) := {cc of F (t)}

Observation: For any two reals s, t with s ≤ t, we have that ∀c ∈ π0F (s),∃!c′ ∈ π0F (t) satisfying

c ∩ c′ 6= ∅ (in fact, c ⊂ c′). This is because the connected components frow with t and are, by de�nition,

pairwise disjoint. Thus, one can de�ne an induced map ϕ(s, t) : π0F (s) → π0F (t) that tells where each

connected component of F (s) "goes" in F (t).

De�nition 1. Given t ∈ R, and c ∈ π0F (t), we de�ne

• Birth time: b(c) := inf {s ≤ t|c ∈ Imϕ(s, t)}

• Death time: d(c) := sup
{
u ≥ t|∀c′ ∈ ϕ(t, u)−1({ϕ(t, u)(c)}), b(c′) ≥ b(c)

}
The interval [b(c), d(c)] is the bar corresponding to c in the barcode of f . Formally,

Barcode(f) := {[b(c), d(c)]|c ∈ C} (2.1)

where

C := {c|c ∈ π0F (t) for some t ∈ R} / ∼
where for t ≤ u and c ∈ π0F (t), c′ ∈ π0F (u) (+ symmetry if u ≤ t),

c ∼ c′ ⇔ ϕ(t, u)(c) = c′ and u ≤ d(c)

De�nition 2. The persistence diagram of f (associated with dimension 0) is the multiset1:

Dgm(f) :=
{

(b(c), d(c)) ∈ R2|c ∈ C
}

(2.2)

Theorem 2 (Stability theorem). For any tame functions f, g : X → R,

d∞B (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ (2.3)
1It means that some points can be repeted.
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Figure 2.1: A function f : X → R, identi�cation of critical points and critical values, and the corresponding
persistence diagram (corresponding to the sublevel sets �ltration).

2.2.2 Computing degree-0 persistence

Input: Graph (V,E), and a map f : V t E → R.

Hypothesis: f gives us a graph �ltration, that is for any (u, v) ∈ E where u, v ∈ V , we have f((u, v)) ≥
max{f(u), f(v)}.

Pre-processing: Sort V tE by increasing lexicographic order (value of f , dimension). It gives a sequence

(σ1, . . . , σm) of vertices and edges. Then initialize a union-�nd data structure V.
for i = 1 . . .m do

if σi is a vertex v then
Create new entry ev := {v} in V // birth of a new cc;

else // (σi is an edge (u, v))
Find entries eu, ev containing respectively u and v in V;
if eu 6= ev then // assume wlog f(eu) < f(ev)

Merge ev into eu in V;
Record the interval [f(ev), f((u, v))) in the barcode ;

end

end

end
Algorithm 1: Degree-0 persistence

Post-processing: For any ev remaining in V, record |f(ev),+∞).

Running time:

• Pre-processing : O(m log(m))

• Main: O(mα(m)), where α is the inverse Ackerman function.

• Post-processing: O(m).


