
INF 556: Topological Data Analysis Fall 2018

Lecture 4: Introduction to homology (part 2)

Lecturer: Steve Oudot T.A.: Théo Lacombe

Disclaimer:

Some typo and errors may remain. Please mention them at theo.lacombe@polytechnique.edu. Use

these notes with caution, especially during the exam (we decline all responsibility linked with the use of

these notes during the exam session).

Reminder: These notes are a concise summary of the lectures. They do not intend in any case to

substitute to your personal notes and are just an additional support in order to clarify or insist on some

points.

Some references: As a complement for these short lecture notes, you can check for two books:

• Element of Algebraic Topology, by J.Munkres (1984), especially chapter 1.

• Introduction to Computational Topology, by H.Edelsbrunner and J.Harer (you can �nd an extract

relative to Homology theory on the website for this course).

Keywords: Simplicial homology, homotopy equivalence invariant, singular homology (optional).

4.1 Algorithm to compute homology

Input: A �nite simplicial complex K, a �eld K.

Output: Hr(K,K), ∀r > 0.
Remind that Hr(K,K) ' Kn for some n ∈ N, so we basically just need to �nd dim(Hr(K,K)) =

dim(Zr)︸ ︷︷ ︸
dim(ker(∂r))

−dim(Br)︸ ︷︷ ︸
rk(∂r+1)

(a.k.a βr).

Therefore, the algorithm consists on computing Mr the matrix of ∂r in the simplex basis (for all r). A
fundamental result of linear algebra (rank-nullity theorem1) gives the following result:




Mr




σ1 σ|Kr|· · ·
ν1

ν|Kr−1|

...
dim(Hr) = |Kr| − rk(Mr)− rk(Mr+1)

In practice: There are di�erent approach. The easiest-to-implement one is the Gaussian Elimination.

Despite being computationally costly in theory (O(n3)), it appears to be e�cient in practice because the

matrix of ∂r is generally sparse (near-linear time in practice).2

1theoreme du rang in French)
2Make use of it in your implementations!
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

1 1 0
1 0 1
0 1 1






1 1 1
1 0 1
0 1 0






1 1 0
1 0 0
0 1 0


c3 ← c3 − c2 c3 ← c3 − c1

Figure 4.1: Sketch of Gaussian elimination

For the following algorithm, we de�ne:

low(j) =

{
0 if M [i, j] = 0, ∀i
max{i|M [i, j] 6= 0} otherwise

which is the row of the lowest non zero-entry in column j.

Algorithm 1 Calculate the rank of a matrix with Gaussian elimination

for j = 1..|Kr| do
while ∃i < j s.t. low(i) = low(j) 6= 0 do

cj ← cj − M [j,low(i)]
M [i,low(i)] ci

end while

end for

return |{j|low(j) 6= 0}|

Proposition 1. This algorithm converges and is correct.

Proof. Exercise.

4.2 Morphisms

The �eld K is �xed.

We have an operator Hr : K 7→ Hr(K,K). We want to extend its de�nition to maps as well: (f : K →
L) 7→ Hr(f). We also want to do it functorially, which means that we want to have:

Hr(f ◦ g) = Hr(f) ◦Hr(g)

Hr(idK) = idHr(K)

De�nition 1. f : K → L is simplicial if ∃f0 : K0 → L0 such that ∀σ = {v0..vn} ∈ K, f(σ) =
{f0(v0) . . . f0(vn)}.

Remark: In this situation, f is entirely de�ned by its restriction to the set of vertices, i.e. by f0. In the

following, both functions are identi�ed.

Proposition 2. A simplicial map f : K → L induces a chain map f# : Cr(K) → Cr(L) between the

chain spaces of K and L which veri�es f# ◦ ∂k = ∂k ◦ f#.

Cr(K) Cr−1(K) C0(K) 0

Cr(L) Cr−1(L) C0(L) 0

f# f# f#

∂r

∂r

∂r−1

∂r−1

∂1

∂1

∂0

∂0

· · ·

· · ·

· · ·

· · ·

Figure 4.2: Chain map. f# transforms chains in K into chains in L, while respecting the structure.



Lecture 4: Introduction to homology (part 2) 4-3

Proof. De�ne f# on each simplex σ as follows:

f#(σ) =

{
f(σ) if dim f(σ) = dim(σ)

0 otherwise

and then extend it by linearity:

f#

(∑

i

αiσi

)

︸ ︷︷ ︸
∈Cr(K)

:=
∑

i

αi f#(σi)︸ ︷︷ ︸
∈Cr(L)

Then we observe that ∀σ = [v0 . . . vr] ∈ Cr(K):

f# ◦ ∂r(σ) = f#

(
r∑

i=0

(−1)i[v0 . . . v̂i . . . vr]

)

=
r∑

i=0

(−1)i f# ([v0 . . . , v̂i, . . . , vr])︸ ︷︷ ︸

=

[f(v0) . . . , f̂(vi), . . . , f(vr)] if dim = r − 1

0 otherwise

But if dim = r − 1 for some i, then dim f(σ) < r as well.
We can then check f# ◦ ∂r(σ) = ∂r ◦ f#(σ) for all σ. We do not provide the details here, you can do

the computations by yourself. You will need to consider the three cases: dim f(σ) = r, dim f(σ) = r − 1,
dim f(σ) 6 r − 2.

Corollary 1. A simplicial map f : K → L induces a linear map f∗ : Hr(K)→ Hr(L), ∀r.

Proof. The core argument is that the chain map f# goes to the quotient. Since everything commutes

in Fig 4.2 (i.e. you can follow the arrows in any order), cycles in Cr(K) are transformed into cycles in

Cr(L), same for boundaries, and therefore f# induces an application f∗ between Hr(K) and Hr(L) which
is linear (since f# is).

Proposition 3 (Functoriality). We have the following properties:

(i) Given K
f−→ L

g−→M , (g ◦ f)∗ = g∗ ◦ f∗.

(ii) Given K, (idK)∗ = idHr(K)

Proof. Exercise (use the construction of f# and the fact that things are preserved by turning it into

f∗).

4.3 Application: invariance of homology

Question: How to go from simplicial complexes to triangulable space? At this point, we only de�ned

homology for a simplicial complexK which is assumed to be a triangulation of some space X. But does the

choice of K matter? If it does not, we would like to de�ne Hr(X) := Hr(K) for any choice of triangulation
K. Good news: this is actually true!

Proposition 4. Given X triangulable, for any two triangulations K,L of X, one has Hr(K) ' Hr(L)
(reminder: ' means is isomorphic to for two vector spaces).

Hence, Hr(X) is well-de�ned.
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Proof. Admitted (not too complicated but technical).

Proposition 5. If f, g : X → Y are homotopy equivalent, then f∗ = g∗ : Hr(X)→ Hr(Y ).

Proof. Admitted (same as before, technical).

Corollary 2. If X,Y are two homotopy equivalent spaces, then Hr(X) ' Hr(Y ). That is: Homology is

an homotopy invariant.

Proof. By de�nition of being homotopy equivalent for two spaces X,Y , we know that there are two

functions f : X → Y and g : Y → X s.t. g ◦ f ∼ idX , f ◦ g ∼ idY (reminder: f ∼ g means there is

ϕ : [0, 1]×X → Y continuous such that ϕ(0, ·) = f(·), ϕ(1, ·) = g(·)).
Due to functoriality and previous proposition:

f∗ ◦ g∗ = (f ◦ g)∗ = (idX)∗ = idHr(X)

g∗ ◦ f∗ = (g ◦ f)∗ = (idY )∗ = idHr(Y )

That is: f∗ : Hr(X)→ Hr(Y ) is an isomorphism of vector spaces (f−1
∗ = g∗) and therefore,

Hr(X) ' Hr(Y )

Remark: We proved that homology is an homotopy equivalence invariant. The converse is not true: one

can �nd two topological spaces X,Y with Hr(X,K) = Hr(Y,K) for all r and any �eld K, but with X,Y
being not homotopy equivalent. The Poincaré homology sphere is an example: it has the same homology

as S3 but is not homotopy equivalent to it.
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Figure 4.3: Representation of the Poincaré sphere.

4.4 Singular homology (optional)

The goal of this section is to extend the construction of homology we made on triangulable spaces (by

de�ning the homology on simplicial complexes) to a more general class of spaces. The construction is

roughly the same as before.
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4.4.1 Singular chains

Idea: Build cycles by gluing basic buildings blocs (the singular simplices) together into chains.

De�nition 2. The k-dimensional standard simplex ∆k is de�ned by the convex hull of {v0 . . . vk} in Rk,
where v0 . . . vk are linearly independent (that is, (v1 − v0, . . . , vk − v0) is a basis of Rk).

De�nition 3. A k-dimensional singular simplex (or singular k-simplex) in X is a continuous map σ :
∆k → X.

v0 = 0

v1

v2

v3

v4

∆1

σ

σ(∆1)

X

Figure 4.4: (left) The k-dimensional standard simplex ∆k. (right) Example of continuous mapping from

∆1 to some space X.

Let K be a �xed �eld.

De�nition 4. A k-chain is a formal �nite K-weighted sum of singular k-simplices:

c :=

n∑

i=1

αi︸︷︷︸
∈K

σi︸︷︷︸
:∆k→X

Equivalent de�nition: c is a map from the singular k-simplices to K that is zero except except on �nitely

many simplices. Here, c is de�ned by the values c(σi) := αi, which must be non-zero for only a �nite set

of (σi)i.

Note: We often identify a simplex with its image. For example, we will write σ to denote σ(∆k).
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σ1

σ2

σ3

X

Figure 4.5: c = σ1 + σ2 + σ3 is a (1-dimensional) singular chain.

Note: The set of k-chains is the set of K valued functions over C(∆k, X) with �nite support. It has a

vector space structure (αc+ c′ : σ 7→ αc(σ) + c′(σ)) We call Ck(X) = KC(∆k,X) this (huge) vector space.

4.4.2 Boundary operator

Question: What is the boundary of a chain? The idea is:

• De�ne the boundary of a simplex

• extend to chains by linearity

As fpr simplicial homology, we can de�ne the orientation of simplices.

De�nition 5 (Orientation). An orientation of ∆k is an order [vπ(0) . . . vπ(k)] on the vertices of ∆k, where

π ∈ Sk+1 is a permutation.

Two orientations π, π′ are equivalent if π′ ◦ π has positive signature.

There are two equivalence classes of orientation:

• Those with positive signature (class of id)

• Those with negative signature.

De�nition 6 (Boundary operator).

∂∆k =
k∑

j=0

(−1)j [v0 . . . , v̂j , . . . , vk]

where (−1)[v0 . . . vk] denote the simplex convex hull({v0 . . . vk}) with the opposite orientation.

Then, given σ : ∆k → X,

∂σ :=
k∑

j=0

(−1)jσ
∣∣
[v0...,v̂j ,...vk]

Given c =
∑
αiσi ∈ Ck(X),

∂c :=
∑

αi∂σi ∈ Ck−1(X)
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4.4.3 Singular homology groups

Just as in previous lecture (section simplicial homology), we can de�ne the (singular) homology group

Hsing
r (X) for a space X and all equivalent notions (Betti numbers, etc.). We have the following theorem:

Theorem 1 (Equivalence of homology). For any triangulable space X, Hr(X) = Hsing
r (X)

So the take home message is that the notion of homology extend to a class of spaces larger than the

simplicial complexes only.


