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5.1 Filtrations and persistence module

Let T ⊂ R be a set of indices.

De�nition 1. A �ltration over T is a family F = (Ft)t∈T of increasing (for inclusion) topological spaces:

∀t, t′ ∈ T, t 6 t′ ⇒ Ft ⊂ Ft′

Examples

• sublevel sets of a function f : X→ R : Ft := f−1((−∞, t])

• superlevel sets of f : X→ R : Ft := f−1([t,+∞))

• o�sets (i.e. sublevel sets of the distance function) to a compact K ∈ Rd:

∀t ∈ R+, Ft :=
⋃

x∈K
B(x, t)

where B(x, t) is the closed euclidean ball centered in x with radius t.

Goal: Encode and estimate the evolution of the topology throughout scales of a family of topological
spaces, for t ∈ T in increasing order.

To do so, the idea is to use homology of Ft for each t, and we got a persistence module.

De�nition 2 (Persistence module). Let K be a given �eld. A persistence module over T ⊂ R is a family
V = (Vt)t∈T of K-vector spaces endowed with linear application vt

′
t : Vt → Vt′ such that:

∀t ∈ T, vtt = id

∀t 6 t′ 6 t′′ ∈ T, vt′′t′ ◦ vt
′
t = vt

′′
t

This condition are called functoriallity conditions.

5-1
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Figure 5.1: Schema of functoriallity condition for persistence module: loop must be identity, and the
oriented edges should "commute", that is the path you take to go from a vertex to another do not depends
on the intermediate vertices you take.

Reminder: The homology veri�es functorial properties: if you have: X
f−→ Y

g−→ Z, then (f◦g)∗ = f∗◦g∗.

Link with �ltrations: If we have F = (Ft)t a �ltration, we can apply the homology functor H∗:

• ∀t ∈ T , we de�ne Vt := H∗(Ft,K)

• ∀t 6 t′, let vt
′
t be the linear application induced by the canonical inclusion Ft

i
↪−→ Ft′ .

One can check that this de�ne a persistence module on our �ltration.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
1.1 1.2

1.3

2.1

2.2

3.1

4.1

4.2

5.1
6.1

H0 ' K3

H1 ' {0}
H0 ' K1

H1 ' {0}
H0 ' K2

H1 ' {0}
H0 ' K1

H1 ' K
H0 ' K1

H1 ' K2

H0 ' K3

H1 ' {0}
⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(
1 1 1

)
(
1
0

) (
1 1
0 0

)


1 0
0 1
0 0


 (

1 0 0
0 1 1

)

Figure 5.2: An example of �ltration over a simplicial complex, and the corresponding persistence module,
that is H0(Ft)⊕H1(Ft), t ∈ {1 . . . 6}. Linear applications vt+1

t : H0(Ft)⊕H1(Ft)→ H0(Ft+1)⊕H1(Ft+1)
are represented as matrices at each step.

Goal: Summarize / encode the algebraic structure of the persistence module V with a barcode.

5.2 Decompositions

T,K are given.
Our goal is to decompose V, that is to be able to write V = V1 ⊕ · · · ⊕ Vm, where Vi are simple and

cannot be decomposed.1

1You can think about it as some analogy with the decomposition of an integer into a product of prime numbers (which
cannot - by de�nition - be decomposed again).
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De�nition 3. An interval of T is a subset I ⊂ T such as:

∀t 6 t′ 6 t′′ ∈ T : t, t′′ ∈ I ⇒ t′ ∈ I
De�nition 4 (interval module). An interval module over I ⊂ T is a persistence module V de�ned by:

• Vt = K if t ∈ I, Vt = {0} otherwise.
• ∀t, t′ ∈ T, vt′t = idK if t, t′ ∈ I, vt′t = 0 otherwise.

Notation for I = [b, d]:

I[b,d] := {0} 0−→ . . .
0−→ {0}︸ ︷︷ ︸

t<b

0−→ K id−→ . . .
id−→ K︸ ︷︷ ︸

b6t6d

0−→ {0} 0−→ . . .
0−→ {0}︸ ︷︷ ︸

d<t

Analogous de�nitions and notations stand for I = (a, b], (a, b), [a, b), etc.

Idea: These interval module are "basic bricks" for decomposition of persistence module and, with some
assumption, we will have decomposition theorems which will state that module can be decomposed into a
direct sum (see below) of interval module.

De�nition 5 (Direct sum of module). Given V = (Vt)t,W = (Wt)t two persistence module with corre-
sponding linear application (vt

′
t )t,t′ , (w

t′
t )t,t′ , we de�ne V⊕W by:

• V⊕W = (Vt ⊕Wt)t

• The corresponding linear applications are denoted by:

(v ⊕ w)t
′
t : Vt ⊕Wt → Vt′ ⊕Wt′

(x, y) 7→ (vt
′
t (x), wt′

t (y))

This de�nition extends naturally for a family of persistence module (Vj)j ∈ J , denoted by V :=
⊕

j∈J Vj.

One can easily check that V⊕W is also a persistence module (idem for a family).

Theorem 1. A persistence module V can be decomposed as a direct sum of interval module, written as:

V '
⊕

I[bj ,dj ]

in the following case (su�cient, not necessary):

1. If T is �nite. [Gabriel, 72].

2. When all the vector spaces Vt are �nite-dimensional, [Crowley-Boevey, 2012].

Furthermore, when it exists, the decomposition is unique (up to isomorphism and ordering of terms).

When we have such a decomposition, knowing the intervals [bj , dj ] gives a complete description of the
structure of V.

However, requiring these conditions may be too restrictive for our applications. One can consider

X = {0} ∪
⋃

n>1

{
1

n

}
⊂ R

along with:

Ft := [−t, t] ∪
⋃

n>1

[
1

n
− t, 1

n
+ t

]

Vt := H0(Ft) ' Knt where nt =

∣∣∣∣
{
n ∈ N∗

∣∣∣∣
1

n+ 1
+ t <

1

n
− t
}∣∣∣∣

and observe that:
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• V0 is in�nite-dimensional

• Vt is �nite-dimensional (for all t > 0)

• T = R+

So none of the two previous conditions is satis�ed, but V can still be decomposed as:

V ' I[0,+∞) ⊕
⊕

n>1

I[
0, 1

2n(n+1)

)

De�nition 6. A persistence module V is said to be q-tame if ∀t < t′ ∈ T , rank(vt
′
t ) is �nite.

Theorem 2 (Chazal, Cohen-Steiner, Glisse, Guibas, O., 2009). A persistence module V = (Vt)t admits a
well-de�ned barcode as soon as V is q-tame, even if V is not decomposable.

Examples: As a good news, most of the �ltrations we will consider will induce q-tame persistence
module. It concerns (among other �ltrations):

• O�sets (distances to a compact of Rd)

• All Morse functions

• Sublevel and superlevel sets of functions f : X→ R with X triangulable.

5.3 Computations of barcodes and persistence diagrams

Input: A simplicial �ltration, that is a �ltration over a simplicial complex K which veri�es:

• T = {0, 1, . . . ,m} (�nite, so we have a decomposable �ltration).

• K0 = ∅,Km = K

• ∀t ∈ T,Kt is a simplicial complex, which is a sub-complex of Kt+1.

We can also assume (easy to verify) that we actually only add one simplex at each step, that is Kt+1\Kt =
{σt}.

Algorithm: We can basically apply the same algorithm as for simplicial homology, just by adding the
ordering over the simplices:

1. Write the matrix M of the boundary operator ∂

2. de�ne

low(j) :=

{
max{i|Mij 6= 0}
0 if Mij = 0 for all i

3. Use Gaussian elimination from left to the right.

Algorithm 1 Compute the barcode corresponding to a simplicial �ltration

for j = 1 . . .m do

while ∃i < j s.t. low(i) = low(j) 6= 0 do

cj ← cj − M [low(i),j]
M [low(i),i] ci

end while

end for

return The reduced matrix.
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4. Interpretation: (after reduction)

• Each column with full 0 entries induces a cycle.

• Any other column j (with non 0) induces a boundary which trivialize (destroy) the cycle
i = low(j)

Thus:

• Each column i with full 0 encodes the beginning of one interval module in the decomposition
of the persistence module H∗(K), i.e. ∂σ̂i ↔ module interval I[i,?].

• Finite intervals are I[i,j] with i = low(j)

• In�nite intervals are I[i,+∞) when there is no j such that i = low(j).

Example: K = Z/2Z, we take the complex introduced in �gure 5.2

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
1.1 1.2

1.3

2.1

2.2

3.1

4.1

4.2

5.1
6.1

Leading to (matrix reduction):




1 1 1
1 1

1 1 1

1 1
1
1
1







1
1 1

1 1

1
1
1
1




1.1
1.2
1.3
2.1
2.2

3.1

4.1

4.2
5.1
6.1

1.1
1.2
1.3
2.1
2.2

3.1

4.1

4.2
5.1
6.1

2.
1

2.
2

4.
1

4.
2

5.
1

6.
1

2.
1

2.
2

4.
1

4.
2

5.
1

6.
1

Gaussian elimination

Thus,

H0 ' I[1.1,+∞) ⊕ I[1.2,2.1) ⊕ I[1.3,2.2) ⊕ I[3.1,4.1)

H1 ' I[4.2,+∞) ⊕ I[5.1,6.1)

i.e., if we �lter just for T = {1, 2, . . . , 6} for the steps:

H0 ' I[1,+∞) ⊕ I[1,2) ⊕ I[1,2) ⊕ I[3,4)

H1 ' I[4,+∞) ⊕ I[5,6)

5.4 Stability

Persistence diagrams: The goal of this section is to de�ne a way to compare barcode in order to give
some powerful results. Due to the distances involved (see below), it is more convenient to deal with an
equivalent representation of the barcode, which is called the persistence diagram of our persistence module.
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Figure 5.3: (left) Barcode. (right) The corresponding persistence diagram. To each interval [bj , dj ] in the
barcode corresponds one point of coordinate (bj , dj) in the persistence diagram. Note that there could be
several points with same coordinates (b, d). In this case, points are counted with multiplicity. Thus, a
diagram is often referred to as a multiset of points above the diagonal.

Goal: We have an operator f 7→ Dg(f) which maps a function to a diagram (for example by taking the
sublevel sets). The question is to know if this operator has some stability properties: if we modify f , does
Dg(f) changes a lot?

In order to quantify that, we need metrics on input and output spaces.

• For functions f, g : X→ R, we compare them with ‖.‖∞
• For diagrams, we need to introduce a matching distance which is called the bottleneck distance.

De�nition 7 (Partial matching). A partial matching between two set A,B is a subset M ⊂ A×B so that:

• ∀a ∈ A, there is at most one b such that (a, b) ∈M

• ∀b ∈ B, there is at most one a such that (a, b) ∈M
De�nition 8. We de�ne ∆ = {(x, x) ∈ R2} (the diagonal). We note Ω = {(x, y) ∈ R2|x < y} (the points
above the diagonal). We de�ne the following cost function on Ω (here, the diagonal ∆ must be understood
as one additional point):

• c(x, y) = ‖x− y‖∞ for x, y ∈ Ω.

• c(x,∆) = c(∆, x) = ‖x− π∆(x)‖∞, where π∆(x) is the orthogonal projection of x onto the diagonal
∆.

• c(∆,∆) = 0

De�nition 9 (Matching cost). Let A,B be two sets of points in Ω (i.e. diagrams) and M a partial
matching between A and B. Its cost is de�ned as:

c(M) = max

{
sup

(a,b)∈M
c(a, b), sup

(s)∈A∪B unmatched

c(s,∆)

}

De�nition 10 (Bottleneck distance). Let A,B be two diagrams. The bottleneck distance between these
two diagrams is de�ned as:

d∞B := inf
M :A↔B

c(M) (5.1)
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Figure 5.4: An example of (optimal) matching between two diagrams (blue and red dots). The bottleneck
distance between these two diagrams is, by de�nition, the length of the longest edge (measured in ‖.‖∞).

Why the bottleneck? The following theorem states that the bottleneck is a good metric to manipulate
diagrams due to a stability result.

Theorem 3 (Cohen-Steiner, Edelsbrunner, Harer 2005, Chazal, Cohen-Steiner, Glisse, Guibas, O., 2009).
Let f, g : X → R be two q-tame functions (i.e. the homology module they induce are q-tame), and
Dg(f), Dg(g) be the persistence diagrams they induce. The operator f 7→ Dg(f) is 1-Lipschitz, that is:

d∞B (Dg(f), Dg(g)) 6 ‖f − g‖∞ (5.2)

Proof. Cf slides page 6. Cf Book, chapter 3, section 2.1 and 2.2.
It basically use the following interleaving:

⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆
⊆ ⊆ ⊆

F(2n−2)ε F2nε F(2n−2)ε

G(2n−1)ε G(2n+1)ε

H∗(F(2n−2)ε) H∗(F2nε) H∗(F(2n−2)ε)

H∗(G(2n−1)ε) H∗(G(2n+1)ε)

In homology, it becomes:

De�nition 11. Let V = (Vt)t∈R and W = (Wt)t∈R be two persistence module on R. V and W are said
to be interleaved if there are two families of applications ϕ = (ϕt)t, ψ = (ψt)t where ϕt : Vt → Wt+ε and
ψt : Wt → Vt+ε such that for all t 6 t′, the following diagrams commute:
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Vt′

Wt′+εWt

Vt
vt

′
t
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′+ε
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ϕt
ϕt′
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ψt
ψt′

Wt+ε

Vt Vt+2ε

ϕt
ψt+ε

Wt

Vt+ε

Wt+2ε

ψt
ϕt+ε

Figure 5.5: Schematic representation of interleaving between persistence module.

Theorem 4 (Chazal, Cohen-Steiner, Glisse, Guibas, O., 2009). If V,W are q-tame and ε-interleaved,
then:

d∞B (Dg(V), Dg(W)) 6 ε

Corollary 1. let di(V,W) := inf{ε > 0|V,W are interleaved } ∈ R+ ∪ {+∞}.
Then, for all q-tame module V,W,

dB(Dg(V), Dg(W)) 6 di(V,W)

Actually, we even have this isometric property [Lesnick 2011]:

dB(Dg(V), Dg(W)) = di(V,W)

Conclusion: Persistence diagrams, endowed with the bottleneck distance, are stable representations of
the underlying topology (persistent homology) of our data, and this is a natural metric regarding the
standard one between module.


