
INF 556: Topological Data Analysis Fall 2018

Lecture 6: Homology Inference

Lecturer: Steve Oudot T.A.: Théo Lacombe

Disclaimer:

Some typo and errors may remain. Please mention them at theo.lacombe@polytechnique.edu. Use

these notes with caution, especially during the exam (we decline all responsibility linked with the use of

these notes during the exam session).

Reminder: These notes are a concise summary of the lectures. They do not intend in any case to

substitute to your personal notes and are just an additional support in order to clarify or insist on some

points.

Goal: Infer the homology group of (unknown) topological space X from a �nite set of points P (roughly

approximating X).

6.1 Distance functions

Let X ⊂ Rd be a compact set.

De�nition 1 (Distance function). The distance function dX is de�ned by:

dX : Rd → R+

z 7→ min
x∈X
‖z − x‖2

Note: Distance functions are closely related to the Hausdor� distance dH , which is the "right" metric

between compact set in Rd.

De�nition 2.

dH(X,Y ) := max{max
x∈X

dY (x),max
y∈Y

dX(y)}

Proposition 1.

dH(X,Y ) = ‖dX − dY ‖∞ = sup
z∈Rd

|dX(z)− dY (z)| (6.1)

Proof. By de�nition,

‖dX − dY ‖∞ >
{

maxx∈X |dY (x)− 0|
maxy∈Y |dX(y)− 0|

⇒ ‖dX − dY ‖∞ > dH(X,Y )

Now, given z ∈ Rd, let x ∈ X be one of its nearest neighbors in X, and let y ∈ Y be a nearest neighbor

of x on Y . We have:

dY (z)− dX(z) 6 ‖y − z‖ − ‖x− z‖
6 ‖x− y‖ = dY (x) 6 max

X
dY
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Symmetrically, dX(z)− dY (z) 6 maxX dY .
Therefore,

∀z, |dY (z)− dX(z)| 6 dH(X,Y )

⇒ ‖dX − dY ‖∞ 6 dH(X,Y )

Corollary 1 (Prop + stability theorem). Given P �nite such that dH(P,X) 6 ε for some (unknown)

compact set X,

dB(Dgm(dP ),Dgm(dX)) 6 ε (6.2)

Dgm(dP )

Dgm(dX)

ε-noise

Figure 6.1: Illustration of the corollary ?? : approximating X with a point cloud P lead to an ε-close
barcode (in bottleneck distance).

Questions:

• When and how does Dgm(dX) re�ect the homology of X?

• How to compute Dgm(P ) in practice?

6.2 Medial axis and reach

Let X ⊂ Rd be a compact set.

De�nition 3. Given z ∈ Rd, let ΠX(z) := arg minx∈X ‖z − x‖, which is called the projection set of z on

X.

Notes:

• PiX(z) 6= ∅ since X is compact.

• When #ΠX(z) = 1, one calls "projection of z on X" the unique point of ΠX(z), denoted by πX(z).

De�nition 4 (Medial axis). The medial axis of X is:

M(X) :=
{
z ∈ Rd|#ΠX(z) > 1

}
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Note: The projection map πX is de�ned outsideM(X):

πX : Rd\M(X)→ X

De�nition 5 (Reach). The reach of X is:

rch(X) := inf
x∈X,z∈M(X)

‖x− z‖

M(X) = ∅ (convex set)

X compact, C1,1 continous manifold on Rd, ⇒ rch(X) > 0

M(X) is not bounded

Figure 6.2: Di�erent example of medial axis for di�erent compact sets.

Lemma 1 (Federer 1959). πX is continuous over Rd\M(X) (admitted).

Theorem 1. Let X ⊂ Rd compact be such that rch(X) > 0. Then: ∀t ∈ [0, rch(X)), the t-o�set of X is

homotopy equivalent to X:

X ' Xt :=
⋃
x∈X

B(x, t) = d−1X ((−∞, t]) (6.3)

Proof. Note that X ⊂ Xr for all r > 0. So one can consider:

i : X → Xt natural inclusion

πX : Xt → X projection

Since t < rch(X), we have Xt ∩M(X) = ∅ and so πX is well-de�ned over Xt.

We have that:

πX ◦ i = idX

i ◦ πX = πX which is homotopic to idXt

F : [0, 1]×Xt → Xt

(s, z) 7→ (1− s)z + sπX(z)

6.3 Computing Dgm(dP )

In practice, o�sets �ltration are replaced by equivalent simplicial �ltrations built on P using metric infor-

mation.
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Classical choices:

De�nition 6 (�Cech (or nerve) �ltration).

C(P ) = (C(P, t))t∈R

σ = {p0 . . . pr} ⊂ P ∈ C(P, t)⇔
r⋂
i=0

B(pi, t) 6= ∅

Theorem 2 (Nerve). ∀t ∈ R, C(P, t) is homotopy equivalent to Pt :=
⋃
p∈P B(p, t)

Lemma 2 (Persistent nerve, Chazal, O, 2008). Moreover, ∀s 6 t ∈ R, the following diagram commutes:

Hr(Ps) Hr(Pt)

Hr(C(P, s)) Hr(C(P, t))

⊆

' '
⊆

⇒ Dgm(Pt)t∈R = Dgm(C(P ))

De�nition 7 (Vietoris-Rips �ltration).

R(P ) := (R(P, t))t∈R
σ = {p0 . . . pr} ∈ R(P, t)⇔ max

pi,pj∈σ
‖pi − pj‖︸ ︷︷ ︸

diam(σ)

6 t

Proposition 2.

∀t ∈ R, R(P, t) ⊆ C(P, t) ⊆ R(P, 2t)

Proof.

r⋂
i=0

B(pi, t) 6= ∅ ⇒ ∀i, ‖pi − p0‖ 6 2t

⇒ diam({p0 . . . pr}) 6 2t

⇒ C(P, t) ⊆ R(P, 2t)

Conversely,

diam({p0 . . . pr}) 6 t⇒ p0 ∈
r⋂
i=0

B(pi, t) 6= ∅

⇒ R(P, t) ⊆ C(P, t)

Note: C(P, t) = R(P, 2t),∀t ∈ R, when P ⊂ (Rn, l∞).

Proof. Exercise
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t
C(P, t)

R(P, 2t)

P

P t

Figure 6.3: Example of �Cech and Rips �ltrations.

Remark: These �ltrations can be computationally costly to compute: size grows with scale 2n in general,
where n is the number of points in P . Finding sparsi�ed �ltrations (i.e. better than Rips or �Cech in terms

of complexity while preserving good homological properties regarding the unknown underlying space X).

This is a current research topic, some recent progress are:

• Sparse Voronoi Re�nement �ltration

• Sparse Rips �ltrations

• Rips zigzags


