
INF 556: Topological Data Analysis Fall 2018

Lecture 7: Topological descriptors for geometric data

Lecturer: Steve Oudot T.A.: Théo Lacombe

Disclaimer:

Some typo and errors may remain. Please mention them at theo.lacombe@polytechnique.edu. Use
these notes with caution, especially during the exam (we decline all responsibility linked with the use of
these notes during the exam session).

Reminder: These notes are a concise summary of the lectures. They do not intend in any case to
substitute to your personal notes and are just an additional support in order to clarify or insist on some
points.

7.1 A distance between metric spaces: the Gromov-Hausdor� distance

We focus now on applying persistent homology to geometric data: basically the input data can be a
3D-shape, a point cloud, etc. The general framework to encode such items is to consider our data to be
metric spaces. We want a notion of distance between our input data, that is a distance between metric
spaces. This will be the Gromov-Hausdor� distance.

We �rst recall the de�nition of the Hausdor� distance, introduced in previous lecture, which is a
distance between sets included in a same metric space.

De�nition 1. Let (Z, dZ) be a metric space, and let X,Y ⊂ Z.

dZH(X,Y ) := max

{
sup
x∈X

inf
y∈Y

dZ(x, y), sup
y∈Y

inf
x∈X

dZ(x, y)

}
(7.1)

We can now de�ne the Gromov-Hausdor� distance:

De�nition 2 (Gromov-Hausdor� distance). Let (X, dX) and (Y, dY ) be two metric spaces.

dGH(X,Y ) := inf
(Z,dZ),γX ,γY

dZH(γX(X), γY (Y )) (7.2)

where the in�mum is taken under the constraints:

• (Z, dZ) is a metric space

• γX (resp γY ) is an isometry between X and Z (resp Y and Z).

Interpretation: Given two metric spaces, we are looking for all common (isometric) embedding of these
spaces, and among all possible such embeddings, we are interested in the one that minimizes the Hausdor�
distance between the two spaces.
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Figure 7.1: Schematic illustration of the Gromov-Hausdor� distance.

7.2 Topological descriptors

Consider (X, dX) a compact metric space. Informally, a descriptor (or a signature) on (X, dX) is a way
to summarize X. The idea is then to use descriptors instead of initial objects to perform statistical and
learning tasks. Basically, a descriptor should be (in an ideal world, not exhaustive list):

• easy to compute,

• easy to compare,

• stable (if two initial objects are similar, corresponding descriptors should be similar),

• inverse-stable (if two descriptors are similar, input objects should be similar),

• interpretable,

• useful in applications.

For example, given a set of real numbers, their arithmetic mean is a descriptor of this set. It is easy to
compute, easy to compare (we even get an order so we can rank things!), it's somewhat stable (details
are skipped), but not inverse-stable (two very di�erent sets could have the same arithmetic mean). In
the context of geometric data, there are many descriptors (cf slides page 3). In this lecture, we see how
persistence diagrams can be used as (topological) descriptors for geometric data.

7.2.1 Global signatures

Let (X, dX) be a compact metric space. We recall the de�nition of the �ech �ltration (adapted to a metric
space):
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De�nition 3 (�Cech (or nerve) �ltration).

C(X, dX) = (Ct(X, dX))t≥0 ,

σ = {x0 . . . xr} ⊂ X ∈ Ct(X, dX)⇔
r⋂
i=0

B(xi, t) 6= ∅.

We have the nerve theorem:

Theorem 1 (Nerve). Let X ⊂ (Z, dZ) (equipped with the endowed metric). Suppose that ∀σ ⊂ X �nite,⋂
x∈σ BZ(x, t) is either empty or contractible. Then, Ct(X, dZ) is homotopy equivalent to

⋃
x∈X BZ(x, t).

Interpretation: The �ech �ltration is a combinatorial proxy for the union of ball with radius t centered
in X.

De�nition 4 (Vietoris-Rips �ltration).

R(X, dX) := (Rt(X, dX))t≥0

σ = {x0 . . . xr} ∈ Rt(X, dX)⇔ max
xi,xj∈σ

‖xi − xj‖︸ ︷︷ ︸
diam(σ)

≤ t

Remark: The Rips �ltration is easier to compute than the �ech one.

Proposition 1. For any (X, dX) compact,

∀t ∈ R, Rt(X, dX) ⊆ Ct(X, dX) ⊆ R2t(X, dX)

Proof. Exercise.

Proposition 2. If (X, dX) = (Rd, `∞), then C(X, dX) = R(X, dX).

Theorem 2 (Stability theorem). For (X, dX) and (Y, dY ) two compact metric spaces,

d∞B (Dgm(R(X, dX)),Dgm(R(Y, dY ))) ≤ 2dGH(X,Y ) (7.3)

Remark: This bound is tight. However, there is no converse inequality: you can �nd di�erent (in
Gromov-Hausdor� sense) metric spaces having same diagrams.

7.2.2 Local signatures

De�nition 5. A metric space (X, dX) is said to be intrinsic if

∀x, y ∈ X, dX(x, y) = inf
γ∈Π(x,y)

L(γ)

where Π(x, y) := {γ : [0, 1]→ X continuous , γ(0) = x, γ(1) = y} is the set of path between x and y, and

L(γ) := inf
n∈N,0=t0≤...tn=1

n−1∑
i=0

dX(γ(ti, ti+1)

is the length of γ.
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Figure 7.2: (left) Case of two metric spaces (point cloud) such that dGH = 2ε and d∞B = ε. (right) Example
where dGH = 1/2 while d∞B = 0.

De�nition 6. Given (X, dX) intrinsic metric space, x ∈ X,

ρ(X,x) := sup{r > 0|∀r′ < r,BX(x, r′) is convex }.

Being convex means ∀y, z ∈ BX(x, r′),∃! shortest path ∈ Π(y, z) and that path lies in BX(x, r′).

ρ(X) := inf
x∈X

ρ(X,x)

De�nition 7 (Gromov-Hausdor� distance between pointed spaces). Let X,Y ⊂ (Z, dZ), and x0 ∈ x, y0 ∈
Y . Consider the pointed space (X,x0) and (Y, y0). Their Hausdor� distance is de�ned as

dZH((X,x0), (Y, y0)) := max{dZ(x0, y0), dZH(X,Y )}.

Consider now two metric spaces (X, dX) and (Y, dY ), and two points x0 ∈ x, y0 ∈ Y . The Gromov-

Hausdor� distance between (X,x0, dX) and (Y, y0, dY ) is de�ned as

dGH((X,x0, dX), (Y, y0, dY )) := inf
(Z,dZ),γX ,γY

dZH((γX(X), γX(x0)), (γY (Y ), γY (y0)))

where the in�mum is taken under the constraints:

• (Z, dZ) is a metric space

• γX (resp γY ) is an isometry between X and Z (resp Y and Z).


